Suppr超能文献

使用深度学习进行脑肿瘤分割:以最少的MRI数据实现高性能。

Brain tumor segmentation using deep learning: high performance with minimized MRI data.

作者信息

Huang Jacky, Yagmurlu Banu, Molleti Powell, Lee Richard, VanderPloeg Abigail, Noor Humaira, Bareja Rohan, Li Yiheng, Iv Michael, Itakura Haruka

机构信息

Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, United States.

Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States.

出版信息

Front Radiol. 2025 Jul 8;5:1616293. doi: 10.3389/fradi.2025.1616293. eCollection 2025.

Abstract

PURPOSE

Brain tumor segmentation with MRI is a challenging task, traditionally relying on manual delineation of regions-of-interest across multiple imaging sequences. However, this data-intensive approach is time-consuming. We aimed to optimize the process by using a deep learning (DL) based model while minimizing the number of MRI sequences required to segment gliomas.

METHODS

We trained a 3D U-Net DL model using the annotated 2018 MICCAI BraTS dataset (training dataset,  = 285), focusing on sub-segmenting enhancing tumor (ET) and tumor core (TC). We compared the performances of models trained on four different combinations of MRI sequences: T1C-only, FLAIR-only, T1C + FLAIR and T1 + T2 + T1C + FLAIR to evaluate whether a smaller MRI data subset could achieve comparable performance. We evaluated the performance on the four different sequence combinations using 5-fold cross-validation on the training dataset, then on our test dataset ( = 358) consisting of samples from a separately held-out 2018 BraTS validation set ( = 66) and 2021 BraTS datasets ( = 292). Dice scores on both cross-validation and test datasets were assessed to measure model performance.

RESULTS

Dice scores on cross-validation showed that T1C + FLAIR (ET: 0.814, TC: 0.856) matched or outperformed those of T1 + T2 + T1C + FLAIR (ET: 0.785, TC: 0.841), T1C-only (ET: 0.781, TC: 0.852) and FLAIR-only (ET: 0.008, TC: 0.619). Results on the test dataset also showed that T1C + FLAIR (ET: 0.867, TC: 0.926) matched or outperformed those of T1 + T2 + T1C + FLAIR (ET: 0.835, TC: 0.908), T1C-only (ET: 0.726, TC: 0.928), and FLAIR-only (ET: 0.056, TC: 0.543). T1C + FLAIR excelled in both ET and TC, exceeding the performance of the four-sequence dataset. T1C-only matched T1C + FLAIR in TC performance. Similarly T1C and T1C + FLAIR also outperformed in ET delineation by sensitivity (0.829) and Hausdorff distance (5.964) on the test set. Across all configurations, specificity remained high (≥0.958). T1C performed well in TC delineation (sensitivity: 0.737), but the inclusion of all sequences led to improvement (0.754). Hausdorff distances clustered in a narrow range (17.622-33.812) for TC delineation across the configurations.

CONCLUSIONS

DL-based brain tumor segmentation can achieve high accuracy using only two MRI sequences (T1C + FLAIR). Reduction of multiple sequence dependency may enhance DL generalizability and dissemination in both clinical and research contexts. Our findings may ultimately help mitigate human labor intensity of a complex task integral to medical imaging analysis.

摘要

目的

利用磁共振成像(MRI)进行脑肿瘤分割是一项具有挑战性的任务,传统上依赖于在多个成像序列上手动勾勒感兴趣区域。然而,这种数据密集型方法耗时较长。我们旨在通过使用基于深度学习(DL)的模型来优化这一过程,同时尽量减少分割胶质瘤所需的MRI序列数量。

方法

我们使用注释后的2018年医学图像计算与计算机辅助干预国际会议(MICCAI)脑肿瘤分割(BraTS)数据集(训练数据集,n = 285)训练了一个3D U-Net DL模型,重点是对强化肿瘤(ET)和肿瘤核心(TC)进行子分割。我们比较了在四种不同MRI序列组合上训练的模型的性能:仅T1C、仅FLAIR、T1C + FLAIR以及T1 + T2 + T1C + FLAIR,以评估较小的MRI数据子集是否能实现可比的性能。我们在训练数据集上使用五折交叉验证,然后在我们的测试数据集(n = 358)上评估四种不同序列组合的性能,测试数据集由单独留出的2018年BraTS验证集(n = 66)和2021年BraTS数据集(n = 292)的样本组成。评估交叉验证和测试数据集上的Dice分数以衡量模型性能。

结果

交叉验证的Dice分数表明,T1C + FLAIR(ET:0.814,TC:0.856)与T1 + T2 + T1C + FLAIR(ET:0.785,TC:0.841)、仅T1C(ET:0.781,TC:0.852)和仅FLAIR(ET:0.008,TC:0.619)相比持平或更优。测试数据集的结果也表明,T1C + FLAIR(ET:0.867,TC:0.926)与T1 + T2 + T1C + FLAIR(ET:0.835,TC:0.908)、仅T1C(ET:0.726,TC:0.928)和仅FLAIR(ET:0.056,TC:0.543)相比持平或更优。T1C + FLAIR在ET和TC方面均表现出色,超过了四序列数据集的性能。仅T1C在TC性能上与T1C + FLAIR相当。同样,在测试集上,T1C和T1C + FLAIR在ET勾勒方面的灵敏度(0.829)和豪斯多夫距离(5.964)也更优。在所有配置中,特异性均保持较高(≥0.958)。T1C在TC勾勒方面表现良好(灵敏度:0.737),但包含所有序列会有所改善(0.754)。在各种配置下,TC勾勒的豪斯多夫距离聚集在一个狭窄范围内(17.622 - 33.812)。

结论

基于DL的脑肿瘤分割仅使用两个MRI序列(T1C + FLAIR)就能实现高精度。减少对多个序列的依赖可能会提高DL在临床和研究环境中的通用性和传播性。我们的发现最终可能有助于减轻医学成像分析中这项复杂任务的人力强度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a44/12281592/3301bfcd23ed/fradi-05-1616293-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验