Stathopoulos Ioannis, Serio Luigi, Karavasilis Efstratios, Kouri Maria Anthi, Velonakis Georgios, Kelekis Nikolaos, Efstathopoulos Efstathios
2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece.
Technology Department, CERN, 1211 Geneva, Switzerland.
J Imaging. 2024 Nov 21;10(12):296. doi: 10.3390/jimaging10120296.
Central Nervous System (CNS) tumors represent a significant public health concern due to their high morbidity and mortality rates. Magnetic Resonance Imaging (MRI) has emerged as a critical non-invasive modality for the detection, diagnosis, and management of brain tumors, offering high-resolution visualization of anatomical structures. Recent advancements in deep learning, particularly convolutional neural networks (CNNs), have shown potential in augmenting MRI-based diagnostic accuracy for brain tumor detection. In this study, we evaluate the diagnostic performance of six fundamental MRI sequences in detecting tumor-involved brain slices using four distinct CNN architectures enhanced with transfer learning techniques. Our dataset comprises 1646 MRI slices from the examinations of 62 patients, encompassing both tumor-bearing and normal findings. With our approach, we achieved a classification accuracy of 98.6%, underscoring the high potential of CNN-based models in this context. Additionally, we assessed the performance of each MRI sequence across the different CNN models, identifying optimal combinations of MRI modalities and neural networks to meet radiologists' screening requirements effectively. This study offers critical insights into the integration of deep learning with MRI for brain tumor detection, with implications for improving diagnostic workflows in clinical settings.
中枢神经系统(CNS)肿瘤因其高发病率和死亡率而成为重大的公共卫生问题。磁共振成像(MRI)已成为检测、诊断和管理脑肿瘤的关键非侵入性方法,能够提供高分辨率的解剖结构可视化。深度学习,特别是卷积神经网络(CNN)的最新进展,已显示出增强基于MRI的脑肿瘤检测诊断准确性的潜力。在本研究中,我们使用通过迁移学习技术增强的四种不同CNN架构,评估六种基本MRI序列在检测肿瘤累及脑切片方面的诊断性能。我们的数据集包括来自62名患者检查的1646张MRI切片,涵盖有肿瘤和正常的结果。通过我们的方法,我们实现了98.6%的分类准确率,突出了基于CNN的模型在这种情况下的高潜力。此外,我们评估了每个MRI序列在不同CNN模型中的性能,确定了MRI模态和神经网络的最佳组合,以有效满足放射科医生的筛查要求。这项研究为深度学习与MRI在脑肿瘤检测中的整合提供了关键见解,对改善临床环境中的诊断工作流程具有重要意义。