Melesi Simone, Pińkowski Piotr, Pigulski Bartłomiej, Gulia Nurbey, Szafert Sławomir, Bertarelli Chiara, Castiglioni Chiara, Casari Carlo S
Department of Energy, Micro and Nanostructured Materials Laboratory-NanoLab, Energy, Politecnico di Milano, Via Ponzio 34/3, Milano 20133, Italy.
Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, Wrocław 50-383, Poland.
J Phys Chem C Nanomater Interfaces. 2025 Jul 8;129(28):12916-12926. doi: 10.1021/acs.jpcc.5c02960. eCollection 2025 Jul 17.
Carbon atomic wires (CAWs) are one-dimensional (1D) sp-carbon nanostructures with remarkable electronic, mechanical, and optical properties, but their instability limits their practical applications. Embedding them in solid matrices can enhance their stability. This work reports the first example of electrospun nanofibers embedding halogenated CAWs. A solution of poly-(methyl methacrylate) and CAWs in ,-dimethylformamide was electrospun using various parameters to investigate the effects on fiber morphology and diameter. Halogenated CAWs were successfully incorporated with a minimal morphological impact. Raman spectroscopy confirmed effective embedding and CAWs stability during electrospinning. The halogenated CAWs showed resistance to degradation for at least six months and demonstrated enhanced thermal stability when embedded within nanofibers. Additionally, our work investigated the influence of different halogen terminations on the degradation kinetics of CAWs upon exposure to these conditions. Similarly, photodegradation studies revealed improved photostability within fibers and demonstrated how CAWs chemical structure affects degradation pathways, including possible homolytic C-X bond cleavage. This work introduces electrospun nanofibers as a novel platform for stabilizing CAWs, offering advantages over thin films, such as better homogeneity, larger surface area, and comparable stability. These findings open new perspectives for CAWs-based nanocomposites in electronics, electrochemistry, and energy-related applications.
碳原子线(CAWs)是具有卓越电子、机械和光学性能的一维(1D)sp 碳纳米结构,但其不稳定性限制了它们的实际应用。将它们嵌入固体基质中可以提高其稳定性。这项工作报道了首例电纺纳米纤维嵌入卤化 CAWs 的实例。使用各种参数对聚(甲基丙烯酸甲酯)和 CAWs 在 N,N-二甲基甲酰胺中的溶液进行电纺,以研究对纤维形态和直径的影响。卤化 CAWs 成功地被掺入,对形态的影响最小。拉曼光谱证实了在电纺过程中 CAWs 的有效嵌入和稳定性。卤化 CAWs 显示出至少六个月的抗降解性,并且当嵌入纳米纤维中时表现出增强的热稳定性。此外,我们的工作研究了不同卤素端基对 CAWs 在暴露于这些条件下的降解动力学的影响。同样,光降解研究揭示了纤维内光稳定性的提高,并展示了 CAWs 的化学结构如何影响降解途径,包括可能的均裂 C-X 键断裂。这项工作引入电纺纳米纤维作为稳定 CAWs 的新型平台,与薄膜相比具有优势,如更好的均匀性、更大的表面积和相当的稳定性。这些发现为基于 CAWs 的纳米复合材料在电子、电化学和能源相关应用中开辟了新的前景。