Wirth Wolfgang, Eckstein Felix
Chondrometrics GmbH, Freilassing, Germany.
Research Program for Musculoskeletal Imaging, Center for Anatomy and Cell Biology, Paracelsus Medical University, Salzburg, Austria.
Osteoarthr Cartil Open. 2025 Jul 4;7(3):100645. doi: 10.1016/j.ocarto.2025.100645. eCollection 2025 Sep.
Denuded areas of subchondral bone (dAB) pose a challenge for fully automated segmentation of articular cartilage and subchondral bone in knees with severe radiographic osteoarthritis using convolutional neural networks (CNNs). Here we propose an automated post-processing relying on a selection-based multi-atlas registration for reconstructing the total area of subchondral bone (tAB) to overcome this issue. We evaluate the agreement, accuracy and longitudinal sensitivity to cartilage change of this novel methodology.
CNN-based models were trained using manual cartilage segmentations from sagittal DESS and coronal FLASH MRI of knees with radiographic (KLG2-4) or severe radiographic osteoarthritis (KLG4 only). These were then applied to KLG4 test knees with manual cartilage segmentations. Automated post-processing was applied to reconstruct missing parts of the tAB and to refine the segmentations, particularly for dABs. The agreement and accuracy of automated cartilage analysis were evaluated using Dice Similarity Coefficients (DSC) and Bland-Altman analyses; sensitivity to one-year change was assessed using the standardized response mean (SRM).
Stronger agreement (DSC 0.80 ± 0.07 to 0.89 ± 0.05) and lower systematic offsets for cartilage thickness (1.2 %-8.4 %) and tAB area (-0.4 %-4.3 %) were observed for CNNs trained on KLG2-4 rather than KLG4 knees; overall, results were superior to those without registration-based post-processing. Sensitivity to change was greatest for manual segmentation of DESS (SRM ≥ -0.69; automated: ≥-0.56) and for automated segmentation of FLASH (≥-0.74; manual ≥-0.44).
CNN-based segmentation combined with registration-based post-processing for accurate delineation of tABs/dABs substantially improves fully-automated (longitudinal) analysis of cartilage and subchondral bone morphology in knees with severe radiographic osteoarthritis.
对于使用卷积神经网络(CNN)对患有严重影像学骨关节炎的膝关节进行关节软骨和软骨下骨的全自动分割而言,软骨下骨裸露区域(dAB)是一项挑战。在此,我们提出一种基于选择的多图谱配准的自动后处理方法,以重建软骨下骨总面积(tAB)来克服这一问题。我们评估这种新方法的一致性、准确性以及对软骨变化的纵向敏感性。
基于CNN的模型使用来自患有影像学(KLG2 - 4)或严重影像学骨关节炎(仅KLG4)膝关节的矢状面DESS和冠状面FLASH MRI的手动软骨分割进行训练。然后将这些模型应用于具有手动软骨分割的KLG4测试膝关节。应用自动后处理来重建tAB的缺失部分并细化分割,特别是对于dAB区域。使用骰子相似系数(DSC)和布兰德 - 奥特曼分析评估自动软骨分析的一致性和准确性;使用标准化反应均值(SRM)评估对一年变化的敏感性。
对于在KLG2 - 4膝关节上训练的CNN,观察到更强的一致性(DSC为0.80±0.07至0.89±0.05)以及软骨厚度(1.2% - 8.4%)和tAB面积( - 0.4%至4.3%)的更低系统偏移;总体而言,结果优于未进行基于配准的后处理的情况。对于DESS的手动分割(SRM≥ - 0.69;自动分割:≥ - 0.56)以及FLASH的自动分割(≥ - 0.74;手动分割≥ - 0.44),对变化的敏感性最大。
基于CNN的分割结合基于配准的后处理以准确描绘tAB/dAB,可显著改善对患有严重影像学骨关节炎的膝关节软骨和软骨下骨形态的全自动(纵向)分析。