Paracelsus Medical University, Salzburg and Nuremberg, Salzburg, Austria, and Chondrometrics, Ainring, Germany.
Stanford University, Stanford, California.
Arthritis Care Res (Hoboken). 2022 Jun;74(6):929-936. doi: 10.1002/acr.24539. Epub 2022 Apr 1.
To study the longitudinal performance of fully automated cartilage segmentation in knees with radiographic osteoarthritis (OA), we evaluated the sensitivity to change in progressor knees from the Foundation for the National Institutes of Health OA Biomarkers Consortium between the automated and previously reported manual expert segmentation, and we determined whether differences in progression rates between predefined cohorts can be detected by the fully automated approach.
The OA Initiative Biomarker Consortium was a nested case-control study. Progressor knees had both medial tibiofemoral radiographic joint space width loss (≥0.7 mm) and a persistent increase in Western Ontario and McMaster Universities Osteoarthritis Index pain scores (≥9 on a 0-100 scale) after 2 years from baseline (n = 194), whereas non-progressor knees did not have either of both (n = 200). Deep-learning automated algorithms trained on radiographic OA knees or knees of a healthy reference cohort (HRC) were used to automatically segment medial femorotibial compartment (MFTC) and lateral femorotibial cartilage on baseline and 2-year follow-up magnetic resonance imaging. Findings were compared with previously published manual expert segmentation.
The mean ± SD MFTC cartilage loss in the progressor cohort was -181 ± 245 μm by manual segmentation (standardized response mean [SRM] -0.74), -144 ± 200 μm by the radiographic OA-based model (SRM -0.72), and -69 ± 231 μm by HRC-based model segmentation (SRM -0.30). Cohen's d for rates of progression between progressor versus the non-progressor cohort was -0.84 (P < 0.001) for manual, -0.68 (P < 0.001) for the automated radiographic OA model, and -0.14 (P = 0.18) for automated HRC model segmentation.
A fully automated deep-learning segmentation approach not only displays similar sensitivity to change of longitudinal cartilage thickness loss in knee OA as did manual expert segmentation but also effectively differentiates longitudinal rates of loss of cartilage thickness between cohorts with different progression profiles.
为了研究全自动软骨分割在放射学骨关节炎(OA)膝关节中的纵向性能,我们评估了基于国立卫生研究院 OA 生物标志物联盟的自动分割与之前报道的手动专家分割在进展性膝关节中的变化敏感性,并确定了完全自动化方法是否可以检测到预定义队列之间的进展率差异。
OA 倡议生物标志物联盟是一项巢式病例对照研究。进展性膝关节在基线后 2 年既存在内侧胫骨股骨关节间隙宽度损失(≥0.7mm),又存在 Western Ontario 和 McMaster 大学骨关节炎指数疼痛评分持续增加(0-100 分制上≥9 分)(n=194),而非进展性膝关节既没有前者也没有后者(n=200)。在放射学 OA 膝关节或健康参考队列(HRC)的膝关节上训练的深度学习自动算法用于在基线和 2 年随访磁共振成像上自动分割内侧股胫关节(MFTC)和外侧股胫软骨。结果与之前发表的手动专家分割进行了比较。
在进展性队列中,手动分割的 MFTC 软骨损失平均值±标准差为-181±245μm(标准化反应均值[SRM]为-0.74),基于放射学 OA 的模型为-144±200μm(SRM 为-0.72),基于 HRC 的模型为-69±231μm(SRM 为-0.30)。进展性队列与非进展性队列之间进展率的 Cohen's d 值分别为手动分割-0.84(P<0.001)、基于自动放射学 OA 模型的-0.68(P<0.001)和基于自动 HRC 模型的-0.14(P=0.18)。
全自动深度学习分割方法不仅显示出与手动专家分割相似的膝关节 OA 纵向软骨厚度损失变化敏感性,而且还能有效区分具有不同进展特征的队列之间的软骨厚度损失的纵向速率。