Suppr超能文献

深度CNAP:一种使用光电容积脉搏波描记术进行连续无创动脉血压监测的深度学习方法。

DeepCNAP: A Deep Learning Approach for Continuous Noninvasive Arterial Blood Pressure Monitoring Using Photoplethysmography.

作者信息

Kim Dong-Kyu, Kim Young-Tak, Kim Hakseung, Kim Dong-Joo

出版信息

IEEE J Biomed Health Inform. 2022 Aug;26(8):3697-3707. doi: 10.1109/JBHI.2022.3172514. Epub 2022 Aug 11.

Abstract

Arterial blood pressure (ABP) monitoring may permit the early diagnosis and management of cardiovascular disease (CVD); however, existing methods for measuring ABP outside the clinic use inconvenient cuff sphygmomanometry, or do not estimate continuous ABP waveforms. This study proposes a novel deep learning model DeepCNAP for estimating continuous BP waveform from a noninvasively measured photoplethysmography (PPG) signal in real-time. DeepCNAP was designed through the combination of deep convolutional networks and self-attention. The proposed method was constructed via 10-fold cross-validation based on the MIMIC database (the number of subjects = 942, recording time = 374.43 hours). The performance of DeepCNAP was evaluated from two perspectives: estimating ABP from PPG and classifying hemodynamically unstable events (i.e., hypertension, prehypertension, hypotension, and the normal state). The mean absolute errors of the BP estimates were 3.40 ± 4.36 mmHg for systolic BP, 1.75 ± 2.25 mmHg for diastolic BP, and 3.23 ± 2.21 mmHg for the BP waveform, indicating that DeepCNAP satisfies the standards of both the British Hypertension Society (BHS) and the Association for the Advancement of Medical Instrumentation (AAMI). From the estimated BP, hypertension, prehypertension, hypotension, and the normal state were classified with 99.44, 97.58, 92.23, and 94.64% accuracy, respectively. DeepCNAP enables feasible real-time estimation of invasively measured ABP from noninvasive PPG. With its noninvasive nature, high accuracy, and clinical relevance, the proposed model could be valuable in general wards at hospitals and for wearable devices in daily life.

摘要

动脉血压(ABP)监测有助于心血管疾病(CVD)的早期诊断和管理;然而,现有的门诊外测量ABP的方法使用不便的袖带血压计,或者无法估计连续的ABP波形。本研究提出了一种新型深度学习模型DeepCNAP,用于从无创测量的光电容积脉搏波描记图(PPG)信号中实时估计连续血压波形。DeepCNAP通过深度卷积网络和自注意力相结合进行设计。所提出的方法基于MIMIC数据库(受试者数量 = 942,记录时间 = 374.43小时)通过10折交叉验证构建。从两个角度评估了DeepCNAP的性能:从PPG估计ABP以及对血流动力学不稳定事件(即高血压、高血压前期、低血压和正常状态)进行分类。血压估计的平均绝对误差为:收缩压3.40±4.36 mmHg,舒张压1.75±2.25 mmHg,血压波形3.23±2.21 mmHg,这表明DeepCNAP符合英国高血压学会(BHS)和医疗仪器促进协会(AAMI)的标准。根据估计的血压,高血压、高血压前期、低血压和正常状态的分类准确率分别为99.44%、97.58%、92.23%和94.64%。DeepCNAP能够从无创PPG中对有创测量的ABP进行可行的实时估计。凭借其无创性、高精度和临床相关性,所提出的模型在医院普通病房和日常生活中的可穿戴设备方面可能具有重要价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验