OVAR-BPnet:一种用于无袖带血压测量的通用脉搏波深度学习方法。
OVAR-BPnet: A General Pulse Wave Deep Learning Approach for Cuffless Blood Pressure Measurement.
作者信息
Cen Yuhui, Luo Jingchun, Wang Hongbo, Chen Li, Zhu Xing, Guo Shijie, Luo Jingjing
出版信息
IEEE J Biomed Health Inform. 2024 Oct;28(10):5829-5841. doi: 10.1109/JBHI.2024.3423461. Epub 2024 Oct 3.
Pulse wave analysis, a non-invasive and cuff-less approach, holds promise for blood pressure (BP) measurement in precision medicine. In recent years, pulse wave learning for BP estimation has undergone extensive scrutiny. However, prevailing methods still encounter challenges in grasping comprehensive features from pulse waves and generalizing these insights for precise BP estimation. In this study, we propose a general pulse wave deep learning (PWDL) approach for BP estimation, introduc-ing the OVAR-BPnet model to powerfully capture intricate pulse wave features and showcasing its effectiveness on multiple types of pulse waves. The approach involves constructing population pulse waves and employing a model comprising an omni-scale convolution subnet, a Vision Transformer subnet, and a multilayer perceptron subnet. This design enables the learning of both single-period and multi-period waveform features from multiple subjects. Additionally, the approach employs a data augmentation strategy to enhance the morphological features of pulse waves and devise a label sequence regularization strategy to strengthen the intrinsic relationship of the subnets' output. Notably, this is the first study to validate the performance of the deep learning approach of BP estimation on three types of pulse waves: photoplethysmography, forehead imaging photoplethysmography, and radial artery pulse pressure waveform. Experiments show that the OVAR-BPnet model has achieved advanced levels in both evaluation indicators and international evaluation criteria, demonstrating its excellent competitiveness and generalizability. The PWDL approach has the potential for widespread application in convenient and continuous BP monitoring systems.
脉搏波分析是一种非侵入性、无袖带的方法,有望应用于精准医学中的血压(BP)测量。近年来,脉搏波学习在血压估计方面受到了广泛关注。然而,现有的方法在从脉搏波中捕捉全面特征并将这些见解推广到精确的血压估计方面仍然存在挑战。在本研究中,我们提出了一种通用的脉搏波深度学习(PWDL)方法来进行 BP 估计,引入了 OVAR-BPnet 模型,以强大的方式捕捉复杂的脉搏波特征,并展示了其在多种类型的脉搏波上的有效性。该方法涉及构建人群脉搏波,并采用包含全尺度卷积子网、视觉转换器子网和多层感知器子网的模型。这种设计使得从多个主体学习单周期和多周期波形特征成为可能。此外,该方法采用数据增强策略来增强脉搏波的形态特征,并设计标签序列正则化策略来增强子网输出的内在关系。值得注意的是,这是首次在三种类型的脉搏波(光电容积脉搏波、额成像光电容积脉搏波和桡动脉脉搏压波形)上验证 BP 估计的深度学习方法性能的研究。实验表明,OVAR-BPnet 模型在评估指标和国际评估标准方面都达到了先进水平,显示出其卓越的竞争力和通用性。PWDL 方法有可能广泛应用于方便和连续的 BP 监测系统中。