Suppr超能文献

hERGAT:通过原子和分子水平相互作用分析,利用图注意力机制预测hERG阻滞剂。

hERGAT: predicting hERG blockers using graph attention mechanism through atom- and molecule-level interaction analyses.

作者信息

Lee Dohyeon, Yoo Sunyong

机构信息

Department of Intelligent Electronics and Computer Engineering, Chonnam National University, Gwangju, Republic of Korea.

出版信息

J Cheminform. 2025 Jan 28;17(1):11. doi: 10.1186/s13321-025-00957-x.

Abstract

The human ether-a-go-go-related gene (hERG) channel plays a critical role in the electrical activity of the heart, and its blockers can cause serious cardiotoxic effects. Thus, screening for hERG channel blockers is a crucial step in the drug development process. Many in silico models have been developed to predict hERG blockers, which can efficiently save time and resources. However, previous methods have found it hard to achieve high performance and to interpret the predictive results. To overcome these challenges, we have proposed hERGAT, a graph neural network model with an attention mechanism, to consider compound interactions on atomic and molecular levels. In the atom-level interaction analysis, we applied a graph attention mechanism (GAT) that integrates information from neighboring nodes and their extended connections. The hERGAT employs a gated recurrent unit (GRU) with the GAT to learn information between more distant atoms. To confirm this, we performed clustering analysis and visualized a correlation heatmap, verifying the interactions between distant atoms were considered during the training process. In the molecule-level interaction analysis, the attention mechanism enables the target node to focus on the most relevant information, highlighting the molecular substructures that play crucial roles in predicting hERG blockers. Through a literature review, we confirmed that highlighted substructures have a significant role in determining the chemical and biological characteristics related to hERG activity. Furthermore, we integrated physicochemical properties into our hERGAT model to improve the performance. Our model achieved an area under the receiver operating characteristic of 0.907 and an area under the precision-recall of 0.904, demonstrating its effectiveness in modeling hERG activity and offering a reliable framework for optimizing drug safety in early development stages.Scientific contribution:hERGAT is a deep learning model for predicting hERG blockers by combining GAT and GRU, enabling it to capture complex interactions at atomic and molecular levels. We improve the model's interpretability by analyzing the highlighted molecular substructures, providing valuable insights into their roles in determining hERG activity. The model achieves high predictive performance, confirming its potential as a preliminary tool for early cardiotoxicity assessment and enhancing the reliability of the results.

摘要

人类醚 - 去极化相关基因(hERG)通道在心脏电活动中起关键作用,其阻滞剂可导致严重的心脏毒性效应。因此,筛选hERG通道阻滞剂是药物研发过程中的关键步骤。已经开发了许多计算机模拟模型来预测hERG阻滞剂,这可以有效地节省时间和资源。然而,以前的方法很难实现高性能并解释预测结果。为了克服这些挑战,我们提出了hERGAT,一种具有注意力机制的图神经网络模型,以考虑原子和分子水平上的化合物相互作用。在原子水平的相互作用分析中,我们应用了一种图注意力机制(GAT),它整合了来自相邻节点及其扩展连接的信息。hERGAT使用带有GAT的门控循环单元(GRU)来学习更远距离原子之间的信息。为了证实这一点,我们进行了聚类分析并可视化了相关热图,验证了在训练过程中考虑了远距离原子之间的相互作用。在分子水平的相互作用分析中,注意力机制使目标节点能够专注于最相关的信息,突出了在预测hERG阻滞剂中起关键作用的分子子结构。通过文献综述,我们证实突出显示的子结构在确定与hERG活性相关的化学和生物学特性方面具有重要作用。此外,我们将物理化学性质整合到我们的hERGAT模型中以提高性能。我们的模型在受试者工作特征曲线下面积达到0.907,精确召回率曲线下面积达到0.904,证明了其在模拟hERG活性方面的有效性,并为早期开发阶段优化药物安全性提供了可靠的框架。科学贡献:hERGAT是一种通过结合GAT和GRU来预测hERG阻滞剂的深度学习模型,使其能够在原子和分子水平上捕捉复杂的相互作用。我们通过分析突出显示的分子子结构来提高模型的可解释性,为它们在确定hERG活性中的作用提供了有价值的见解。该模型实现了高预测性能,证实了其作为早期心脏毒性评估的初步工具的潜力,并提高了结果的可靠性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验