Suppr超能文献

AttenhERG:一种用于预测人乙醚 - 去极化相关基因(hERG)通道阻滞剂的可靠且可解释的图神经网络框架。

AttenhERG: a reliable and interpretable graph neural network framework for predicting hERG channel blockers.

作者信息

Yang Tianbiao, Ding Xiaoyu, McMichael Elizabeth, Pun Frank W, Aliper Alex, Ren Feng, Zhavoronkov Alex, Ding Xiao

机构信息

Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China.

Insilico Medicine Hong Kong Ltd, Unit 310, 3/F, Building 8W, Phase 2, Hong Kong Science Park, Pak Shek Kok, Hong Kong, China.

出版信息

J Cheminform. 2024 Dec 23;16(1):143. doi: 10.1186/s13321-024-00940-y.

Abstract

Cardiotoxicity, particularly drug-induced arrhythmias, poses a significant challenge in drug development, highlighting the importance of early-stage prediction of human ether-a-go-go-related gene (hERG) toxicity. hERG encodes the pore-forming subunit of the cardiac potassium channel. Traditional methods are both costly and time-intensive, necessitating the development of computational approaches. In this study, we introduce AttenhERG, a novel graph neural network framework designed to predict hERG channel blockers reliably and interpretably. AttenhERG demonstrates improved performance compared to existing methods with an AUROC of 0.835, showcasing its efficacy in accurately predicting hERG activity across diverse datasets. Additionally, uncertainty evaluation analysis reveals the model's reliability, enhancing its utility in drug discovery and safety assessment. Case studies illustrate the practical application of AttenhERG in optimizing compounds for hERG toxicity, highlighting its potential in rational drug design.Scientific contributionAttenhERG is a breakthrough framework that significantly improves the interpretability and accuracy of predicting hERG channel blockers. By integrating uncertainty estimation, AttenhERG demonstrates superior reliability compared to benchmark models. Two case studies, involving APH1A and NMT1 inhibitors, further emphasize AttenhERG's practical application in compound optimization.

摘要

心脏毒性,尤其是药物诱导的心律失常,在药物开发中构成了重大挑战,凸显了早期预测人醚 - 去极化相关基因(hERG)毒性的重要性。hERG编码心脏钾通道的孔形成亚基。传统方法既昂贵又耗时,因此需要开发计算方法。在本研究中,我们引入了AttenhERG,这是一种新颖的图神经网络框架,旨在可靠且可解释地预测hERG通道阻滞剂。与现有方法相比,AttenhERG的性能有所提高,其受试者工作特征曲线下面积(AUROC)为0.835,展示了其在跨不同数据集准确预测hERG活性方面的功效。此外,不确定性评估分析揭示了该模型的可靠性,增强了其在药物发现和安全性评估中的实用性。案例研究说明了AttenhERG在优化化合物hERG毒性方面的实际应用,突出了其在合理药物设计中的潜力。

科学贡献

AttenhERG是一个突破性的框架,显著提高了预测hERG通道阻滞剂的可解释性和准确性。通过整合不确定性估计,AttenhERG与基准模型相比显示出更高的可靠性。两个涉及APH1A和NMT1抑制剂的案例研究进一步强调了AttenhERG在化合物优化中的实际应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbfb/11668031/9b9aeffe4e43/13321_2024_940_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验