Suppr超能文献

通过原子层沉积在复杂三维物体上沉积均匀薄膜以制备抗等离子体蚀刻涂层。

Deposition of uniform films on complex 3D objects by atomic layer deposition for plasma etch-resistant coatings.

作者信息

Han Xin, Wang Yixian, Tian Yumo, Wang Yafeng, Peng Lipei, Pei Chunlei, Wang Tuo, Gong Jinlong

机构信息

School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University; Collaborative Innovation Center for Chemical Science & Engineering; Tianjin 300072, China.

International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education, Tianjin 300350, China.

出版信息

Natl Sci Rev. 2025 Jun 17;12(8):nwaf247. doi: 10.1093/nsr/nwaf247. eCollection 2025 Aug.

Abstract

Atomic layer deposition (ALD) is a layer-by-layer technique for producing conformal, high-quality films, ideal for corrosion-resistant coatings on complex geometries. However, depositing thicker films on complex 3D objects presents challenges in maintaining effective precursor delivery across the surface. This paper describes the design and realization of a method to increase precursor concentration in the boundary layer near the complex object surface by introducing slitted baffles within the chamber. Using -OH surface coverage as a key indicator for assessing the extent of surface reactions, simulation is used to optimize the baffle number and shape. The optimal baffle design reduced surface film non-uniformity on the object surface from 35.46% to 5.75%, shortened the purge time from 12.8 to 9.7 s, and increased precursor utilization by 7%. Ideal AlO films exhibited a fluorinated plasma etching rate of 1.11 nm min, five times stronger than non-ideal films (5.19 nm min), indicating superior plasma etching resistance.

摘要

原子层沉积(ALD)是一种逐层技术,用于制备保形的高质量薄膜,非常适合用于复杂几何形状的耐腐蚀涂层。然而,在复杂的三维物体上沉积较厚的薄膜时,要在整个表面上保持有效的前驱体输送存在挑战。本文描述了一种通过在腔室内引入带狭缝的挡板来提高复杂物体表面附近边界层中前驱体浓度的方法的设计与实现。以-OH表面覆盖率作为评估表面反应程度的关键指标,通过模拟来优化挡板的数量和形状。优化后的挡板设计将物体表面的表面膜不均匀性从35.46%降低到5.75%,将吹扫时间从12.8秒缩短到9.7秒,并将前驱体利用率提高了7%。理想的AlO薄膜的氟化等离子体蚀刻速率为1.11纳米/分钟,比非理想薄膜(5.19纳米/分钟)强五倍,表明其具有优异的抗等离子体蚀刻性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验