Geng Yaheng, Xin Wenli, Zhang Lei, Han Yu, Peng Huiling, Yang Min, Zhang Hui, Xiao Xilin, Li Junwei, Yan Zichao, Zhu Zhiqiang, Cheng Fangyi
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China.
Natl Sci Rev. 2024 Nov 11;12(1):nwae397. doi: 10.1093/nsr/nwae397. eCollection 2025 Jan.
Aqueous zinc batteries offer promising prospects for large-scale energy storage, yet their application is limited by undesired side reactions at the electrode/electrolyte interface. Here, we report a universal approach for the building of an electrode/electrolyte interphase (EEI) layer on both the cathode and the anode through the self-polymerization of electrolyte additives. In an exemplified Zn||VO·nHO cell, we reveal that the glutamate additive undergoes radical-initiated electro-polymerization on the cathode and polycondensation on the anode, yielding polyglutamic acid-dominated EEI layers on both electrodes. These EEI layers effectively mitigate undesired interfacial side reactions while enhancing reaction kinetics, enabling Zn||VO·nHO cells to achieve a high capacity of 387 mAh g at 0.2 A g and maintain >96.3% capacity retention after 1500 cycles at 1 A g. Moreover, this interphase-forming additive exhibits broad applicability to varied cathode materials, encompassing VS, VS, VO, α-MnO, β-MnO and δ-MnO. The methodology of utilizing self-polymerizable electrolyte additives to construct robust EEI layers opens a novel pathway in interphase engineering for electrode stabilization in aqueous batteries.
水系锌电池在大规模储能方面展现出广阔前景,但其应用受到电极/电解质界面处不良副反应的限制。在此,我们报道了一种通用方法,通过电解质添加剂的自聚合在阴极和阳极上构建电极/电解质界面(EEI)层。在一个示例性的Zn||VO·nHO电池中,我们发现谷氨酸添加剂在阴极上发生自由基引发的电聚合,在阳极上发生缩聚反应,在两个电极上均生成以聚谷氨酸为主的EEI层。这些EEI层有效减轻了不良界面副反应,同时增强了反应动力学,使Zn||VO·nHO电池在0.2 A g下能够实现387 mAh g的高容量,并在1 A g下经过1500次循环后保持>96.3%的容量保持率。此外,这种形成界面的添加剂对多种阴极材料具有广泛适用性,包括VS、VS、VO、α-MnO、β-MnO和δ-MnO。利用可自聚合的电解质添加剂构建坚固EEI层的方法为水系电池中电极稳定化的界面工程开辟了一条新途径。