文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于预测COVID-19病情进展的不同房室模型的系统比较

Systematic Comparison of Different Compartmental Models for Predicting COVID-19 Progression.

作者信息

Shams Eddin Marwan, El Hajj Hussein, Zayyat Ramez, Lee Gayeon

机构信息

Department of Systems Engineering and Operations Research, George Mason University, Fairfax, VA 22030, USA.

Department of Information Systems and Analytics, Santa Clara University, Santa Clara, CA 95053, USA.

出版信息

Epidemiologia (Basel). 2025 Jul 8;6(3):33. doi: 10.3390/epidemiologia6030033.


DOI:10.3390/epidemiologia6030033
PMID:40700105
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12286127/
Abstract

: The COVID-19 pandemic highlighted the critical need for accurate predictive models to guide public health interventions and optimize healthcare resource allocation. This study evaluates how the complexity of compartmental infectious disease models influences their forecasting accuracy and utility for pandemic resource planning. : We analyzed a range of compartmental models, including simple susceptible-infected-recovered (SIR) models and more complex frameworks incorporating asymptomatic carriers and deaths. These models were calibrated and tested using real-world COVID-19 data from the United States to assess their performance in predicting symptomatic and asymptomatic infection counts, peak infection timing, and resource demands. Both adaptive models (updating parameters with real-time data) and non-adaptive models were evaluated. : Numerical results show that while more complex models capture detailed disease dynamics, simpler models often yield better forecast accuracy, especially during early pandemic stages or when predicting peak infection periods. Adaptive models provided the most accurate short-term forecasts but required substantial computational resources, making them less practical for long-term planning. Non-adaptive models produced stable long-term forecasts useful for strategic resource allocation, such as hospital bed and ICU planning. : Model selection should align with the pandemic stage and decision-making horizon. Simpler models are effective for rapid early-stage interventions, adaptive models excel in short-term operational forecasting, and non-adaptive models remain valuable for long-term resource planning. These findings can inform policymakers on selecting appropriate modeling approaches to improve pandemic response effectiveness.

摘要

:新冠疫情凸显了对准确预测模型的迫切需求,以指导公共卫生干预措施并优化医疗资源分配。本研究评估了传染病 compartmental 模型的复杂性如何影响其预测准确性以及在大流行资源规划中的效用。 :我们分析了一系列 compartmental 模型,包括简单的易感-感染-康复(SIR)模型以及包含无症状携带者和死亡情况的更复杂框架。这些模型使用来自美国的真实世界新冠数据进行校准和测试,以评估它们在预测有症状和无症状感染数量、感染高峰时间以及资源需求方面的表现。同时评估了自适应模型(使用实时数据更新参数)和非自适应模型。 :数值结果表明,虽然更复杂的模型能够捕捉详细的疾病动态,但较简单的模型通常具有更好的预测准确性,尤其是在疫情早期阶段或预测感染高峰期时。自适应模型提供了最准确的短期预测,但需要大量计算资源,这使得它们在长期规划中不太实用。非自适应模型产生的稳定长期预测对于战略资源分配(如医院床位和重症监护病房规划)很有用。 :模型选择应与疫情阶段和决策范围相匹配。较简单的模型对于快速的早期干预有效,自适应模型在短期运营预测方面表现出色,而非自适应模型在长期资源规划中仍然很有价值。这些发现可以为政策制定者在选择合适的建模方法以提高疫情应对有效性方面提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a395/12286127/7fd292bf10bf/epidemiologia-06-00033-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a395/12286127/619f9c154965/epidemiologia-06-00033-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a395/12286127/ebe1e733b0b4/epidemiologia-06-00033-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a395/12286127/b59e6d13349f/epidemiologia-06-00033-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a395/12286127/aa777ef898ff/epidemiologia-06-00033-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a395/12286127/acdc9316d818/epidemiologia-06-00033-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a395/12286127/f279baae4063/epidemiologia-06-00033-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a395/12286127/5d887978c36b/epidemiologia-06-00033-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a395/12286127/fcd88c73a6bc/epidemiologia-06-00033-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a395/12286127/00b5fac7df58/epidemiologia-06-00033-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a395/12286127/8dca91ada03e/epidemiologia-06-00033-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a395/12286127/c474e7434c7c/epidemiologia-06-00033-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a395/12286127/7fd292bf10bf/epidemiologia-06-00033-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a395/12286127/619f9c154965/epidemiologia-06-00033-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a395/12286127/ebe1e733b0b4/epidemiologia-06-00033-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a395/12286127/b59e6d13349f/epidemiologia-06-00033-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a395/12286127/aa777ef898ff/epidemiologia-06-00033-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a395/12286127/acdc9316d818/epidemiologia-06-00033-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a395/12286127/f279baae4063/epidemiologia-06-00033-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a395/12286127/5d887978c36b/epidemiologia-06-00033-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a395/12286127/fcd88c73a6bc/epidemiologia-06-00033-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a395/12286127/00b5fac7df58/epidemiologia-06-00033-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a395/12286127/8dca91ada03e/epidemiologia-06-00033-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a395/12286127/c474e7434c7c/epidemiologia-06-00033-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a395/12286127/7fd292bf10bf/epidemiologia-06-00033-g011.jpg

相似文献

[1]
Systematic Comparison of Different Compartmental Models for Predicting COVID-19 Progression.

Epidemiologia (Basel). 2025-7-8

[2]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[3]
Measures implemented in the school setting to contain the COVID-19 pandemic.

Cochrane Database Syst Rev. 2022-1-17

[4]
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.

Cochrane Database Syst Rev. 2022-7-22

[5]
Survivor, family and professional experiences of psychosocial interventions for sexual abuse and violence: a qualitative evidence synthesis.

Cochrane Database Syst Rev. 2022-10-4

[6]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[7]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[8]
Non-pharmacological measures implemented in the setting of long-term care facilities to prevent SARS-CoV-2 infections and their consequences: a rapid review.

Cochrane Database Syst Rev. 2021-9-15

[9]
Accreditation through the eyes of nurse managers: an infinite staircase or a phenomenon that evaporates like water.

J Health Organ Manag. 2025-6-30

[10]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

本文引用的文献

[1]
A systematic literature review of predicting patient discharges using statistical methods and machine learning.

Health Care Manag Sci. 2024-9

[2]
Predicting the Spread of COVID-19 Using Model Augmented to Incorporate Quarantine and Testing.

Trans Indian Natl Acad Eng. 2020

[3]
A Time-Dependent SIR Model for COVID-19 With Undetectable Infected Persons.

IEEE Trans Netw Sci Eng. 2020-9-18

[4]
Optimal COVID-19 testing strategy on limited resources.

PLoS One. 2023

[5]
Effective screening strategies for safe opening of universities under Omicron and Delta variants of COVID-19.

Sci Rep. 2022-12-9

[6]
Surging ICU during COVID-19 pandemic: an overview.

Curr Opin Crit Care. 2022-12-1

[7]
Benefits of integrated screening and vaccination for infection control.

PLoS One. 2022

[8]
An SEIR Model with Time-Varying Coefficients for Analyzing the SARS-CoV-2 Epidemic.

Risk Anal. 2023-1

[9]
A new SEAIRD pandemic prediction model with clinical and epidemiological data analysis on COVID-19 outbreak.

Appl Intell (Dordr). 2021

[10]
Adapting to the unexpected: Problematic work situations and resilience strategies in healthcare institutions during the COVID-19 pandemic's first wave.

Saf Sci. 2021-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索