Kumar Alok, Giripunje Sushama M, Bharadwaj Mukesh, Muchahary Deboraj
Nanomaterials and Energy Harvesting Devices Laboratory, Department of Physics, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, 440010, India.
National Institute of Technology Raipur, Raipur, Chhattisgarh, 492010, India.
Langmuir. 2025 Aug 5;41(30):19729-19741. doi: 10.1021/acs.langmuir.5c01551. Epub 2025 Jul 23.
This research designs and simulates a high-efficiency tandem solar cell (TSC) using SCAPS-1D (3.3.12), exploiting tandem perovskite technology for enhanced performance. The agenda of our work is here to minimize the two largest losses associated with single-junction solar cells like thermalization and transmission losses by absorbing a broader spectrum of sunlight using CsGeI/CIGS tandem solar cell technology. To ensure the accuracy of the simulated results, the authors first calibrate both the top and bottom solar cells using experimental data and compare the simulated results with experimental findings. This study investigates the impact of thickness, parasitic resistance, temperature, quantum efficiency, band diagram, absorption coefficients, and two-diode model equivalent circuit parameters on solar cell performance. This work optimizes lead-free, wide bandgap (1.6 eV) CsGeI perovskite and narrow bandgap (1.1 eV) CIGS solar cells individually and then proposes a tandem solar cell structure using a filtered spectrum approach. The proposed CsGeI/CIGS tandem solar cell device structure is studied in detail and simulated using SCAPS 1D. A tandem configuration, with a thickness of a 273 nm top cell (simulated under AM1.5G) and a 1000 nm bottom cell, achieved conversion efficiencies of 16.93% and 16.49%, respectively, with respective values of 19.31 mA cm/19.32 mA cm. By adding the voltages at same current points to make the tandem J-V curve, this design yielded a 26.06% efficient perovskite-CIGS tandem cell with of 1.73 V, of 19.32 mA cm, and FF of 77.98%. This perovskite-CIGS tandem design demonstrates a promising route for developing high-efficiency, low-cost TSCs.
本研究使用SCAPS-1D(3.3.12)设计并模拟了一种高效串联太阳能电池(TSC),利用串联钙钛矿技术来提高性能。我们的工作目标是通过使用CsGeI/CIGS串联太阳能电池技术吸收更宽光谱的太阳光,将与单结太阳能电池相关的两个最大损失(如热化损失和传输损失)降至最低。为确保模拟结果的准确性,作者首先使用实验数据对顶部和底部太阳能电池进行校准,并将模拟结果与实验结果进行比较。本研究调查了厚度、寄生电阻、温度、量子效率、能带图、吸收系数和双二极管模型等效电路参数对太阳能电池性能的影响。这项工作分别优化了无铅、宽带隙(1.6 eV)的CsGeI钙钛矿和窄带隙(1.1 eV)的CIGS太阳能电池,然后提出了一种使用滤波光谱方法的串联太阳能电池结构。对所提出的CsGeI/CIGS串联太阳能电池器件结构进行了详细研究,并使用SCAPS 1D进行了模拟。一种串联配置,顶部电池厚度为273 nm(在AM1.5G下模拟),底部电池厚度为1000 nm,分别实现了16.93%和16.49%的转换效率,相应的电流密度值为19.31 mA cm²/19.32 mA cm²。通过在相同电流点相加电压以形成串联J-V曲线,该设计得到了一个效率为26.06%的钙钛矿-CIGS串联电池,其开路电压为1.73 V,电流密度为19.32 mA cm²,填充因子为77.98%。这种钙钛矿-CIGS串联设计为开发高效、低成本的TSC提供了一条有前景的途径。