Suppr超能文献

基于非临床参数和唾液生物标志物开发用于牙周健康状况的机器学习多类别筛查工具。

Development of a machine learning multiclass screening tool for periodontal health status based on non-clinical parameters and salivary biomarkers.

作者信息

Deng Ke, Zonta Francesco, Yang Huan, Pelekos George, Tonetti Maurizio S

机构信息

Shanghai PerioImplant Innovation Center, Department of Oral and Maxillofacial Implantology, National Clinical Research Center of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Department of Biological Sciences, Xi'An Jiaotong Liverpool University, Suzhou, China.

出版信息

J Clin Periodontol. 2024 Dec;51(12):1547-1560. doi: 10.1111/jcpe.13856. Epub 2023 Sep 11.

Abstract

AIM

To develop a multiclass non-clinical screening tool for periodontal disease and assess its accuracy for differentiating periodontal health, gingivitis and different stages of periodontitis.

MATERIALS AND METHODS

A cross-sectional diagnostic study on a convenience sample of 408 consecutive subjects was conducted by applying three non-clinical index tests estimating different features of the periodontal health-disease spectrum: a self-administered questionnaire, an oral rinse activated matrix metalloproteinase-8 (aMMP-8) point-of-care test (POCT) and determination of gingival bleeding on brushing (GBoB). Full-mouth periodontal examination was the reference standard. The periodontal diagnosis was made on the basis of the 2017 classification of periodontal diseases and conditions. Logistic regression and random forest (RF) analyses were performed to predict various periodontal diagnoses, and the accuracy measures were assessed.

RESULTS

Four-hundred and eight subjects were enrolled in this study, including those with periodontal health (16.2%), gingivitis (15.2%) and stage I (15.9%), stage II (15.9%), stage III (29.7%) and stage IV (7.1%) periodontitis. Nine predictors, namely 'gum disease' (Q1), 'a rating of gum/teeth health' (Q2), 'tooth cleaning' (Q3a), the symptom of 'loose teeth' (Q4), 'use of floss' (Q7), aMMP-8 POCT, self-reported GBoB, haemoglobin and age, resulted in high levels of accuracy in the RF classifier. High accuracy (area under the ROC curve > 0.94) was observed for the discrimination of three (health, gingivitis and periodontitis) and six classes (health, gingivitis, stages I, II, III and IV periodontitis). Confusion matrices showed that the misclassification of a periodontitis case as health or gingivitis was less than 1%-2%.

CONCLUSIONS

Machine learning-based classifiers, such as RF analyses, are promising tools for multiclass assessment of periodontal health and disease in a non-clinical setting. Results need to be externally validated in appropriately sized independent samples (ClinicalTrials.gov NCT03928080).

摘要

目的

开发一种用于牙周疾病的多类别非临床筛查工具,并评估其区分牙周健康、牙龈炎和牙周炎不同阶段的准确性。

材料与方法

对408名连续入选的受试者进行便利抽样的横断面诊断研究,应用三项非临床指标测试来评估牙周健康 - 疾病谱的不同特征:一份自我管理问卷、一种口腔冲洗激活基质金属蛋白酶 - 8(aMMP - 8)即时检验(POCT)以及刷牙时牙龈出血(GBoB)的测定。全口牙周检查作为参考标准。牙周诊断依据2017年牙周疾病和状况分类进行。进行逻辑回归和随机森林(RF)分析以预测各种牙周诊断,并评估准确性指标。

结果

本研究共纳入408名受试者,包括牙周健康者(16.2%)、牙龈炎患者(15.2%)以及I期(15.9%)、II期(15.9%)、III期(29.7%)和IV期(7.1%)牙周炎患者。九个预测因素,即“牙龈疾病”(问题1)、“牙龈/牙齿健康评分”(问题2)、“牙齿清洁”(问题3a)、“牙齿松动”症状(问题4)、“使用牙线”(问题7)、aMMP - 8 POCT、自我报告的GBoB、血红蛋白和年龄,在RF分类器中具有较高的准确性。在区分三类(健康、牙龈炎和牙周炎)和六类(健康、牙龈炎、I期、II期、III期和IV期牙周炎)时观察到较高的准确性(ROC曲线下面积>0.94)。混淆矩阵显示,将牙周炎病例误分类为健康或牙龈炎的比例小于1% - 2%。

结论

基于机器学习的分类器,如RF分析,是在非临床环境中对牙周健康和疾病进行多类别评估的有前景的工具。结果需要在适当规模的独立样本中进行外部验证(ClinicalTrials.gov NCT03928080)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b28/11651717/70bea261ab95/JCPE-51-1547-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验