Suppr超能文献

一种结合贝叶斯网络和逻辑回归以加强风险评估的混合方法。

A hybrid approach combining Bayesian networks and logistic regression for enhancing risk assessment.

作者信息

Wei Xueyuan, Dong Yingdong

机构信息

School of Philosophy and History (Biquan Academy), Xiangtan University, Xiangtan, Hunan, 411105, China.

出版信息

Sci Rep. 2025 Jul 23;15(1):26802. doi: 10.1038/s41598-025-10291-9.

Abstract

This study enhances cybersecurity risk assessment by integrating Bayesian Networks (BN) and Logistic Regression (LR) models, using data from the CISA Known Exploited Vulnerabilities catalog. First, a probabilistic causal model is built as a BN to capture complex interdependencies among vulnerability characteristics such as CVSS score, exploit complexity, and attack vector. Conditional probabilities of exploitation are calculated, providing a nuanced, evidence-based understanding of each factor's contribution to risk. Second, these posterior probabilities serve as input features for an LR classifier, combining the BN's dependency structure with LR's discriminative power to predict vulnerability risk levels. Parameter estimation employs maximum likelihood methods, supplemented by expert knowledge where data are sparse. When applied to 775 vulnerability records, the BN-LR hybrid achieves an accuracy rate of 97% and a ROC-AUC of 0.1 on the held-out test set, outperforming both standalone BN (accuracy 86.7%, AUC 0.89) and standalone LR (accuracy 88.1%, AUC 0.90). Sensitivity analysis further highlights that CVSS score and exploit complexity carry the greatest influence on risk predictions. By quantifying both causal relationships and classification boundaries, the integrated model not only improves predictive performance but also offers clear insights into which attributes most strongly drive potential exploits. This practical tool thus enables security teams to prioritize remediation efforts effectively, strengthening organizational vulnerability management and overall security posture.

摘要

本研究通过整合贝叶斯网络(BN)和逻辑回归(LR)模型,利用美国网络安全与基础设施安全局(CISA)已知被利用漏洞目录中的数据,增强了网络安全风险评估。首先,构建一个概率因果模型作为贝叶斯网络,以捕捉漏洞特征(如通用漏洞评分系统(CVSS)分数、利用复杂度和攻击向量)之间的复杂相互依赖关系。计算利用的条件概率,从而对每个因素对风险的贡献提供细致入微、基于证据的理解。其次,这些后验概率用作逻辑回归分类器的输入特征,将贝叶斯网络的依赖结构与逻辑回归的判别能力相结合,以预测漏洞风险水平。参数估计采用最大似然法,并在数据稀疏的情况下辅以专家知识。当应用于775条漏洞记录时,BN-LR混合模型在留出的测试集上实现了97%的准确率和0.1的受试者工作特征曲线下面积(ROC-AUC),优于单独的贝叶斯网络(准确率86.7%,AUC 0.89)和单独的逻辑回归(准确率88.1%,AUC 0.90)。敏感性分析进一步突出显示,CVSS分数和利用复杂度对风险预测的影响最大。通过量化因果关系和分类边界,集成模型不仅提高了预测性能,还清晰地揭示了哪些属性对潜在利用的驱动作用最强。因此,这个实用工具使安全团队能够有效地确定修复工作的优先级,加强组织的漏洞管理和整体安全态势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb17/12287328/452f1c2cefa4/41598_2025_10291_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验