Kepaptsoglou Demie, Castellanos-Reyes José Ángel, Kerrigan Adam, Alves do Nascimento Júlio, Zeiger Paul M, El Hajraoui Khalil, Idrobo Juan Carlos, Mendis Budhika G, Bergman Anders, Lazarov Vlado K, Rusz Ján, Ramasse Quentin M
SuperSTEM Laboratory, Sci-Tech Daresbury Campus, Daresbury, UK.
School of Physics, Engineering and Technology, University of York, Heslington, UK.
Nature. 2025 Aug;644(8075):83-88. doi: 10.1038/s41586-025-09318-y. Epub 2025 Jul 23.
The miniaturization of transistors is approaching its limits owing to challenges in heat management and information transfer speed. To overcome these obstacles, emerging technologies such as spintronics are being developed, which make use of the electron's spin as well as its charge. Local phenomena at interfaces or structural defects will greatly influence the efficiency of spin-based devices, making the ability to study spin-wave propagation at the nanoscale and atomic scale a key challenge. The development of high-spatial-resolution tools to investigate spin waves, also called magnons, at relevant length scales is thus essential to understand how their properties are affected by local features. Here we detect bulk THz magnons at the nanoscale using scanning transmission electron microscopy (STEM). By using high-resolution electron energy-loss spectroscopy with hybrid-pixel electron detectors, we overcome the challenges posed by weak signals to map THz magnon excitations in a thin NiO nanocrystal. Advanced inelastic electron scattering simulations corroborate our findings. These results open new avenues for detecting magnons and exploring their dispersions and their modifications arising from nanoscale structural or chemical defects. This marks a milestone in magnonics and presents exciting opportunities for the development of spintronic devices.
由于热管理和信息传输速度方面的挑战,晶体管的小型化正接近其极限。为克服这些障碍,诸如自旋电子学等新兴技术正在被开发,其利用电子的自旋及其电荷。界面处的局部现象或结构缺陷将极大地影响基于自旋的器件的效率,使得在纳米尺度和原子尺度研究自旋波传播的能力成为一项关键挑战。因此,开发高空间分辨率工具以在相关长度尺度上研究自旋波(也称为磁振子)对于理解其特性如何受到局部特征的影响至关重要。在这里,我们使用扫描透射电子显微镜(STEM)在纳米尺度上检测体太赫兹磁振子。通过使用带有混合像素电子探测器的高分辨率电子能量损失谱,我们克服了微弱信号带来的挑战,以绘制薄NiO纳米晶体中的太赫兹磁振子激发。先进的非弹性电子散射模拟证实了我们的发现。这些结果为检测磁振子以及探索它们的色散和由纳米尺度结构或化学缺陷引起的变化开辟了新途径。这标志着磁振子学的一个里程碑,并为自旋电子器件的发展带来了令人兴奋的机遇。