Barman Anjan, Gubbiotti Gianluca, Ladak S, Adeyeye A O, Krawczyk M, Gräfe J, Adelmann C, Cotofana S, Naeemi A, Vasyuchka V I, Hillebrands B, Nikitov S A, Yu H, Grundler D, Sadovnikov A V, Grachev A A, Sheshukova S E, Duquesne J-Y, Marangolo M, Csaba G, Porod W, Demidov V E, Urazhdin S, Demokritov S O, Albisetti E, Petti D, Bertacco R, Schultheiss H, Kruglyak V V, Poimanov V D, Sahoo S, Sinha J, Yang H, Münzenberg M, Moriyama T, Mizukami S, Landeros P, Gallardo R A, Carlotti G, Kim J-V, Stamps R L, Camley R E, Rana B, Otani Y, Yu W, Yu T, Bauer G E W, Back C, Uhrig G S, Dobrovolskiy O V, Budinska B, Qin H, van Dijken S, Chumak A V, Khitun A, Nikonov D E, Young I A, Zingsem B W, Winklhofer M
Department of Condensed Matter Physics and Material Sciences, S N Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700106, India.
Istituto Officina dei Materiali del Consiglio nazionale delle Ricerche (IOM-CNR), Perugia, Italy.
J Phys Condens Matter. 2021 Aug 5;33(41). doi: 10.1088/1361-648X/abec1a.
Magnonics is a budding research field in nanomagnetism and nanoscience that addresses the use of spin waves (magnons) to transmit, store, and process information. The rapid advancements of this field during last one decade in terms of upsurge in research papers, review articles, citations, proposals of devices as well as introduction of new sub-topics prompted us to present the first roadmap on magnonics. This is a collection of 22 sections written by leading experts in this field who review and discuss the current status besides presenting their vision of future perspectives. Today, the principal challenges in applied magnonics are the excitation of sub-100 nm wavelength magnons, their manipulation on the nanoscale and the creation of sub-micrometre devices using low-Gilbert damping magnetic materials and its interconnections to standard electronics. To this end, magnonics offers lower energy consumption, easier integrability and compatibility with CMOS structure, reprogrammability, shorter wavelength, smaller device features, anisotropic properties, negative group velocity, non-reciprocity and efficient tunability by various external stimuli to name a few. Hence, despite being a young research field, magnonics has come a long way since its early inception. This roadmap asserts a milestone for future emerging research directions in magnonics, and hopefully, it will inspire a series of exciting new articles on the same topic in the coming years.
磁子学是纳米磁学和纳米科学中一个新兴的研究领域,致力于利用自旋波(磁子)来传输、存储和处理信息。在过去十年中,该领域在研究论文数量激增、综述文章发表、引用次数增多、器件提案以及新子课题引入等方面取得了迅速进展,这促使我们推出首份磁子学路线图。这份路线图由该领域的顶尖专家撰写,包含22个章节,他们在回顾和讨论当前现状的同时,还阐述了对未来前景的展望。如今,应用磁子学面临的主要挑战包括激发波长小于100纳米的磁子、在纳米尺度上对其进行操控,以及使用低吉尔伯特阻尼磁性材料制造亚微米级器件并将其与标准电子器件互连。为此,磁子学具有诸多优势,如能耗更低、更容易集成且与CMOS结构兼容、可重新编程、波长更短、器件尺寸更小、具有各向异性特性、负群速度、非互易性以及能通过各种外部刺激实现高效可调谐性等等。因此,尽管磁子学是一个年轻的研究领域,但自其诞生之初起已经取得了长足的发展。这份路线图为磁子学未来新兴的研究方向树立了一个里程碑,希望在未来几年它能激发一系列关于同一主题的精彩新文章。