Choi Dong Hyeok, Hwang Joonil, Yoon Hai-Jeon, Ahn So Hyun
Department of Medicine, Yonsei University College of Medicine, Seoul, Korea.
Medical Physics and Biomedical Engineering Lab, Yonsei University College of Medicine, Seoul, Korea.
Ewha Med J. 2025 Apr;48(2):e30. doi: 10.12771/emj.2025.00094. Epub 2025 Apr 2.
The standardized uptake value (SUV) is a key quantitative index in nuclear medicine imaging; however, variations in region-of-interest (ROI) determination exist across institutions. This study aims to standardize SUV evaluation by introducing a deep learning-based quantitative analysis method that enhances diagnostic and prognostic accuracy.
We used the Swin UNETR model to automatically segment key organs (breast, liver, spleen, and bone marrow) critical for breast cancer prognosis. Tumor segmentation was performed iteratively based on predefined SUV thresholds, and prognostic information was extracted from the liver, spleen, and bone marrow (reticuloendothelial system). The artificial intelligence training process employed 3 datasets: a test dataset (40 patients), a validation dataset (10 patients), and an independent test dataset (10 patients). To validate our approach, we compared the SUV values obtained using our method with those produced by commercial software.
In a dataset of 10 patients, our method achieved an auto-segmentation accuracy of 0.9311 for all target organs. Comparison of maximum SUV and mean SUV values from our automated segmentation with those from traditional single-ROI methods revealed differences of 0.19 and 0.16, respectively, demonstrating improved reliability and accuracy in whole-organ SUV analysis.
This study successfully standardized SUV calculation in nuclear medicine imaging through deep learning-based automated organ segmentation and SUV analysis, significantly enhancing accuracy in predicting breast cancer prognosis.
标准化摄取值(SUV)是核医学成像中的关键定量指标;然而,各机构在感兴趣区域(ROI)确定方面存在差异。本研究旨在通过引入一种基于深度学习的定量分析方法来标准化SUV评估,以提高诊断和预后准确性。
我们使用Swin UNETR模型自动分割对乳腺癌预后至关重要的关键器官(乳房、肝脏、脾脏和骨髓)。基于预定义的SUV阈值迭代进行肿瘤分割,并从肝脏、脾脏和骨髓(网状内皮系统)中提取预后信息。人工智能训练过程使用了3个数据集:一个测试数据集(40例患者)、一个验证数据集(10例患者)和一个独立测试数据集(10例患者)。为验证我们的方法,我们将使用我们的方法获得的SUV值与商业软件生成的SUV值进行了比较。
在一个包含10例患者的数据集里,我们的方法对所有目标器官实现了0.9311的自动分割准确率。将我们自动分割得到的最大SUV值和平均SUV值与传统单ROI方法得到的结果进行比较,发现差异分别为0.19和0.16,这表明在全器官SUV分析中可靠性和准确性有所提高。
本研究通过基于深度学习的自动器官分割和SUV分析成功地标准化了核医学成像中的SUV计算,显著提高了预测乳腺癌预后的准确性。