Suppr超能文献

通过医患互动建模进行循环对偶潜在发现以改善血糖预测:一项预测研究

Cyclic dual latent discovery for improved blood glucose prediction through patient-provider interaction modeling: a prediction study.

作者信息

Park Suyeon, Kim Seoyoung, Rim Dohyoung

机构信息

Ewha Womans University College of Medicine, Seoul, Korea.

Rowan Corporation, Seoul, Korea.

出版信息

Ewha Med J. 2025 Apr;48(2):e34. doi: 10.12771/emj.2025.00332. Epub 2025 Apr 15.

Abstract

PURPOSE

Accurate prediction of blood glucose variability is crucial for effective diabetes management, as both hypoglycemia and hyperglycemia are associated with increased morbidity and mortality. However, conventional predictive models rely primarily on patient-specific biometric data, often neglecting the influence of patient-provider interactions, which can significantly impact outcomes. This study introduces Cyclic Dual Latent Discovery (CDLD), a deep learning framework that explicitly models patient-provider interactions to improve prediction of blood glucose levels. By leveraging a real-world intensive care unit (ICU) dataset, the model captures latent attributes of both patients and providers, thus improving forecasting accuracy.

METHODS

ICU patient records were obtained from the MIMIC-IV v3.0 critical care database, including approximately 5,014 instances of patient-provider interaction. The CDLD model uses a cyclic training mechanism that alternately updates patient and provider latent representations to optimize predictive performance. During preprocessing, all numeric features were normalized, and extreme glucose values were capped at 500 mg/dL to mitigate the effect of outliers.

RESULTS

CDLD outperformed conventional models, achieving a root mean square error of 0.0852 on the validation set and 0.0899 on the test set, which indicates improved generalization. The model effectively captured latent patient-provider interaction patterns, yielding more accurate glucose variability predictions than baseline approaches.

CONCLUSION

Integrating patient-provider interaction modeling into predictive frameworks can increase blood glucose prediction accuracy. The CDLD model offers a novel approach to diabetes management, potentially paving the way for artificial intelligence-driven personalized treatment strategies.

摘要

目的

准确预测血糖变异性对于有效的糖尿病管理至关重要,因为低血糖和高血糖均与发病率和死亡率增加相关。然而,传统的预测模型主要依赖于患者特定的生物特征数据,常常忽略了患者与医疗服务提供者之间互动的影响,而这种互动会对治疗结果产生重大影响。本研究引入了循环双潜在发现(CDLD),这是一种深度学习框架,它明确地对患者与医疗服务提供者之间的互动进行建模,以改善血糖水平的预测。通过利用一个真实世界的重症监护病房(ICU)数据集,该模型捕捉了患者和医疗服务提供者的潜在属性,从而提高了预测准确性。

方法

从MIMIC-IV v3.0重症监护数据库中获取ICU患者记录,包括约5014例患者与医疗服务提供者的互动实例。CDLD模型使用一种循环训练机制,交替更新患者和医疗服务提供者的潜在表示,以优化预测性能。在预处理过程中,所有数值特征都进行了归一化处理,极端血糖值被限定在500mg/dL,以减轻异常值的影响。

结果

CDLD的表现优于传统模型,在验证集上的均方根误差为0.0852,在测试集上为0.0899,这表明泛化能力有所提高。该模型有效地捕捉了潜在的患者与医疗服务提供者之间的互动模式,比基线方法产生了更准确的血糖变异性预测。

结论

将患者与医疗服务提供者之间的互动建模整合到预测框架中可以提高血糖预测的准确性。CDLD模型为糖尿病管理提供了一种新方法,可能为人工智能驱动的个性化治疗策略铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ceb4/12277504/328fd2e2506f/emj-2025-00332f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验