Huang Yaohui, Ni Zhikai, Lu Zhenkun, He Xinqi, Hu Jinbo, Li Boxuan, Ya Houguan, Shi Yunxian
College of Electronic Information, Guangxi Minzu University, Nanning, China.
Laboratory of Intelligent Information Processing and Intelligent Medical, Guangxi Minzu University, Nanning, China.
Front Physiol. 2023 Jul 17;14:1225638. doi: 10.3389/fphys.2023.1225638. eCollection 2023.
Blood glucose prediction (BGP) has increasingly been adopted for personalized monitoring of blood glucose levels in diabetic patients, providing valuable support for physicians in diagnosis and treatment planning. Despite the remarkable success achieved, applying BGP in multi-patient scenarios remains problematic, largely due to the inherent heterogeneity and uncertain nature of continuous glucose monitoring (CGM) data obtained from diverse patient profiles. This study proposes the first graph-based Heterogeneous Temporal Representation (HETER) network for multi-patient Blood Glucose Prediction (BGP). Specifically, HETER employs a flexible subsequence repetition method (SSR) to align the heterogeneous input samples, in contrast to the traditional padding or truncation methods. Then, the relationships between multiple samples are constructed as a graph and learned by HETER to capture global temporal characteristics. Moreover, to address the limitations of conventional graph neural networks in capturing local temporal dependencies and providing linear representations, HETER incorporates both a temporally-enhanced mechanism and a linear residual fusion into its architecture. Comprehensive experiments were conducted to validate the proposed method using real-world data from 112 patients in two hospitals, comparing it with five well-known baseline methods. The experimental results verify the robustness and accuracy of the proposed HETER, which achieves the maximal improvement of 31.42%, 27.18%, and 34.85% in terms of MAE, MAPE, and RMSE, respectively, over the second-best comparable method. HETER integrates global and local temporal information from multi-patient samples to alleviate the impact of heterogeneity and uncertainty. This method can also be extended to other clinical tasks, thereby facilitating efficient and accurate capture of crucial pattern information in structured medical data.
血糖预测(BGP)越来越多地被用于糖尿病患者血糖水平的个性化监测,为医生的诊断和治疗规划提供了有价值的支持。尽管取得了显著成功,但在多患者场景中应用BGP仍然存在问题,这主要是由于从不同患者档案中获得的连续血糖监测(CGM)数据具有内在的异质性和不确定性。本研究提出了首个用于多患者血糖预测(BGP)的基于图的异构时间表示(HETER)网络。具体而言,与传统的填充或截断方法不同,HETER采用灵活的子序列重复方法(SSR)来对齐异构输入样本。然后,将多个样本之间的关系构建为一个图,并由HETER学习以捕获全局时间特征。此外,为了解决传统图神经网络在捕获局部时间依赖性和提供线性表示方面的局限性,HETER在其架构中纳入了时间增强机制和线性残差融合。使用来自两家医院112名患者的真实世界数据进行了综合实验,以验证所提出的方法,并将其与五种著名的基线方法进行比较。实验结果验证了所提出的HETER的鲁棒性和准确性,与第二优的可比方法相比,在MAE、MAPE和RMSE方面分别实现了31.42%、27.18%和34.85%的最大改进。HETER整合了来自多患者样本的全局和局部时间信息,以减轻异质性和不确定性的影响。该方法还可以扩展到其他临床任务,从而有助于高效准确地捕获结构化医学数据中的关键模式信息。