Dragosloveanu Serban, Vulpe Diana Elena, Andrei Constantin Adrian, Nedelea Dana-Georgiana, Garofil Nicolae Dragos, Anghel Cătălin, Dragosloveanu Christiana Diana Maria, Cergan Romica, Scheau Cristian
The "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
"Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, Bucharest, Romania.
J Orthop Translat. 2025 Jul 17;54:51-64. doi: 10.1016/j.jot.2025.06.016. eCollection 2025 Sep.
Periprosthetic joint infection (PJI) is a serious complication that can occur after joint arthroplasty, such as hip or knee replacement surgeries. It involves the invasion of the periprosthetic space by pathogens, leading to severe inflammation and often requiring complex medical intervention. PJI is associated with significant morbidity, increased healthcare costs, and a reduced quality of life for patients. This study aims to evaluate the performance of multiple supervised machine learning models in predicting PJI using clinical and demographic data collected from patients who underwent joint arthroplasty.
Eight supervised machine learning models-Logistic Regression, Random Forest, XGBoost, Artificial Neural Network (ANN), k-Nearest Neighbors (KNN), AdaBoost, Gaussian Naive Bayes (GNB), and Stochastic Gradient Descent (SGD)-were trained and tested on a dataset of 27,854 patients. Models were evaluated using accuracy, precision, recall, specificity, F1 score, and area under the ROC curve (AUC).
Random Forest and XGBoost showed the best overall performance, with high accuracy and balanced metrics across all evaluation criteria. KNN also performed strongly, particularly in minimizing misclassifications. GNB and SGD yielded weaker results, with higher error rates.
Random Forest, XGBoost, and KNN are the most promising models for clinical implementation in PJI prediction. Their robust performance may support earlier diagnosis and improved patient outcomes in orthopedic care.
This study demonstrates that machine learning models-particularly Random Forest and XGBoost-can accurately predict periprosthetic joint infection (PJI) using structured electronic health record data. By integrating these models into preoperative assessment workflows, clinicians may be able to identify high-risk patients earlier, personalize prophylactic strategies, and reduce infection-related morbidity. The implementation of these predictive tools has the potential to enhance clinical decision-making, improve surgical outcomes, and optimize the use of healthcare resources in orthopedic practice.
人工关节周围感染(PJI)是关节置换术后可能发生的一种严重并发症,如髋关节或膝关节置换手术。它涉及病原体侵入人工关节周围间隙,导致严重炎症,通常需要复杂的医疗干预。PJI与显著的发病率、增加的医疗费用以及患者生活质量下降相关。本研究旨在使用从接受关节置换术的患者收集的临床和人口统计学数据,评估多个监督机器学习模型在预测PJI方面的性能。
在一个包含27854例患者的数据集上对八个监督机器学习模型——逻辑回归、随机森林、XGBoost、人工神经网络(ANN)、k近邻(KNN)、AdaBoost、高斯朴素贝叶斯(GNB)和随机梯度下降(SGD)进行训练和测试。使用准确率、精确率、召回率、特异性、F1分数和ROC曲线下面积(AUC)对模型进行评估。
随机森林和XGBoost表现出最佳的整体性能,在所有评估标准中具有高准确率和平衡的指标。KNN也表现出色,特别是在最小化错误分类方面。GNB和SGD的结果较弱,错误率较高。
随机森林、XGBoost和KNN是PJI预测临床应用中最有前景的模型。它们的稳健性能可能支持骨科护理中更早的诊断和改善患者预后。
本研究表明,机器学习模型——特别是随机森林和XGBoost——可以使用结构化电子健康记录数据准确预测人工关节周围感染(PJI)。通过将这些模型整合到术前评估工作流程中,临床医生可能能够更早地识别高危患者,个性化预防策略,并降低感染相关的发病率。这些预测工具的实施有可能加强临床决策,改善手术结果,并优化骨科实践中医疗资源的使用。