Suppr超能文献

评估用于心血管疾病预测的二元分类器:增强早期诊断能力。

Evaluating Binary Classifiers for Cardiovascular Disease Prediction: Enhancing Early Diagnostic Capabilities.

作者信息

Iacobescu Paul, Marina Virginia, Anghel Catalin, Anghele Aurelian-Dumitrache

机构信息

Department of Computer Science and Information Technology, "Dunărea de Jos" University of Galati, 800201 Galati, Romania.

Medical Department of Occupational Health, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University of Galati, 800201 Galati, Romania.

出版信息

J Cardiovasc Dev Dis. 2024 Dec 9;11(12):396. doi: 10.3390/jcdd11120396.

Abstract

Cardiovascular disease (CVD) is a significant global health concern and the leading cause of death in many countries. Early detection and diagnosis of CVD can significantly reduce the risk of complications and mortality. Machine learning methods, particularly classification algorithms, have demonstrated their potential to accurately predict the risk of cardiovascular disease (CVD) by analyzing patient data. This study evaluates seven binary classification algorithms, including Random Forests, Logistic Regression, Naive Bayes, K-Nearest Neighbors (kNN), Support Vector Machines, Gradient Boosting, and Artificial Neural Networks, to understand their effectiveness in predicting CVD. Advanced preprocessing techniques, such as SMOTE-ENN for addressing class imbalance and hyperparameter optimization through Grid Search Cross-Validation, were applied to enhance the reliability and performance of these models. Standard evaluation metrics, including accuracy, precision, recall, F1-score, and Area Under the Receiver Operating Characteristic Curve (ROC-AUC), were used to assess predictive capabilities. The results show that kNN achieved the highest accuracy (99%) and AUC (0.99), surpassing traditional models like Logistic Regression and Gradient Boosting. The study examines the challenges encountered when working with datasets related to cardiovascular diseases, such as class imbalance and feature selection. It demonstrates how addressing these issues enhances the reliability and applicability of predictive models. These findings emphasize the potential of kNN as a reliable tool for early CVD prediction, offering significant improvements over previous studies. This research highlights the value of advanced machine learning techniques in healthcare, addressing key challenges and laying a foundation for future studies aimed at improving predictive models for CVD prevention.

摘要

心血管疾病(CVD)是一个重大的全球健康问题,也是许多国家的主要死因。早期发现和诊断心血管疾病可以显著降低并发症和死亡率的风险。机器学习方法,特别是分类算法,已经通过分析患者数据展示了其准确预测心血管疾病(CVD)风险的潜力。本研究评估了七种二元分类算法,包括随机森林、逻辑回归、朴素贝叶斯、K近邻(kNN)、支持向量机、梯度提升和人工神经网络,以了解它们在预测心血管疾病方面的有效性。应用了先进的预处理技术,如用于解决类不平衡问题的SMOTE-ENN和通过网格搜索交叉验证进行超参数优化,以提高这些模型的可靠性和性能。使用标准评估指标,包括准确率、精确率、召回率、F1分数和接收器操作特征曲线下面积(ROC-AUC)来评估预测能力。结果表明,kNN实现了最高的准确率(99%)和AUC(0.99),超过了逻辑回归和梯度提升等传统模型。该研究探讨了处理与心血管疾病相关的数据集时遇到的挑战,如类不平衡和特征选择。它展示了如何解决这些问题可以提高预测模型的可靠性和适用性。这些发现强调了kNN作为早期心血管疾病预测可靠工具的潜力,比以前的研究有显著改进。这项研究突出了先进机器学习技术在医疗保健中的价值,解决了关键挑战,并为未来旨在改进心血管疾病预防预测模型的研究奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fe2/11678659/5d68ea77734c/jcdd-11-00396-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验