Bülow Erik, Hahn Ute, Andersen Ina Trolle, Rolfson Ola, Pedersen Alma B, Hailer Nils P
The Swedish Arthroplasty Register, Centre of Registers Västra Götaland, Gothenburg, Sweden.
Department of Orthopaedics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Clin Epidemiol. 2022 Mar 4;14:239-253. doi: 10.2147/CLEP.S347968. eCollection 2022.
To develop a parsimonious risk prediction model for periprosthetic joint infection (PJI) within 90 days after total hip arthroplasty (THA).
We used logistic LASSO regression with bootstrap ranking to develop a risk prediction model for PJI within 90 days based on a Swedish cohort of 88,830 patients with elective THA 2008-2015. The model was externally validated on a Danish cohort with 18,854 patients.
Incidence of PJI was 2.45% in Sweden and 2.17% in Denmark. A model with the underlying diagnosis for THA, body mass index (BMI), American Society for Anesthesiologists (ASA) class, sex, age, and the presence of five defined comorbidities had an area under the curve (AUC) of 0.68 (95% CI: 0.66 to 0.69) in Sweden and 0.66 (95% CI: 0.64 to 0.69) in Denmark. This was superior to traditional models based on ASA class, Charlson, Elixhauser, or the Rx Risk V comorbidity indices. Internal calibration was good for predicted probabilities up to 10%.
A new PJI prediction model based on easily accessible data available before THA was developed and externally validated. The model had superior discriminatory ability compared to ASA class alone or more complex comorbidity indices and had good calibration. We provide a web-based calculator (https://erikbulow.shinyapps.io/thamortpred/) to facilitate shared decision making by patients and surgeons.
建立全髋关节置换术(THA)后90天内假体周围关节感染(PJI)的简约风险预测模型。
我们使用逻辑LASSO回归和自助排序法,基于2008 - 2015年瑞典88,830例择期THA患者队列,建立90天内PJI的风险预测模型。该模型在丹麦18,854例患者队列中进行了外部验证。
瑞典PJI发病率为2.45%,丹麦为2.17%。一个包含THA的基础诊断、体重指数(BMI)、美国麻醉医师协会(ASA)分级、性别、年龄以及五种特定合并症的模型,在瑞典的曲线下面积(AUC)为0.68(95%CI:0.66至0.69),在丹麦为0.66(95%CI:0.64至0.69)。这优于基于ASA分级、Charlson、Elixhauser或Rx Risk V合并症指数的传统模型。内部校准对于预测概率高达10%时效果良好。
开发了一种基于THA前易于获取的数据的新型PJI预测模型,并进行了外部验证。与单独的ASA分级或更复杂的合并症指数相比,该模型具有更好的区分能力且校准良好。我们提供了一个基于网络的计算器(https://erikbulow.shinyapps.io/thamortpred/),以促进患者和外科医生的共同决策。