Department of Physics, University of Washington, Seattle, WA, 98195, USA.
Department of Materials Sciences & Engineering, University of Washington, Seattle, WA, 98195, USA.
Adv Mater. 2021 Jun;33(23):e1904131. doi: 10.1002/adma.201904131. Epub 2020 Jun 18.
Magnetic nanoparticles are currently the focus of investigation for a wide range of biomedical applications that fall into the categories of imaging, sensing, and therapeutics. A deep understanding of nanoparticle magnetization dynamics is fundamental to optimization and further development of these applications. Here, a summary of theoretical models of nanoparticle dynamics is presented, and computational nonequilibrium models are outlined, which currently represent the most sophisticated methods for modeling nanoparticle dynamics. Nanoparticle magnetization response is explored in depth; the effect of applied field amplitude, as well as nanoparticle size, on the resulting rotation mechanism and timescale is investigated. Two applications in biomedicine, magnetic particle imaging and magnetic fluid hyperthermia, are highlighted.
磁性纳米粒子目前是广泛的生物医学应用的研究焦点,这些应用涵盖成像、传感和治疗等领域。深入了解纳米粒子磁化动力学是优化和进一步发展这些应用的基础。本文总结了纳米粒子动力学的理论模型,并概述了计算非平衡模型,这是目前用于模拟纳米粒子动力学的最复杂方法。本文深入探讨了纳米粒子磁化响应,研究了外加磁场幅度以及纳米粒子尺寸对旋转机制和时间尺度的影响。本文还重点介绍了生物医学中的两个应用,即磁粒子成像和磁流体热疗。
Int J Nanomedicine. 2017-8-28
Biomed Tech (Berl). 2015-10
J Phys D Appl Phys. 2025-7-28
J Nanobiotechnology. 2025-7-1
Int J Nanomedicine. 2025-6-17
Front Chem. 2025-5-26
Front Bioeng Biotechnol. 2025-1-15
Phys Med Biol. 2019-3-29
Nanomaterials (Basel). 2018-10-23
Phys Med Biol. 2018-1-22
Nanoscale. 2017-12-7
ACS Nano. 2017-10-4