文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

非平衡动力学的磁性纳米粒子及其在生物医学中的应用。

Nonequilibrium Dynamics of Magnetic Nanoparticles with Applications in Biomedicine.

机构信息

Department of Physics, University of Washington, Seattle, WA, 98195, USA.

Department of Materials Sciences & Engineering, University of Washington, Seattle, WA, 98195, USA.

出版信息

Adv Mater. 2021 Jun;33(23):e1904131. doi: 10.1002/adma.201904131. Epub 2020 Jun 18.


DOI:10.1002/adma.201904131
PMID:32557879
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7746587/
Abstract

Magnetic nanoparticles are currently the focus of investigation for a wide range of biomedical applications that fall into the categories of imaging, sensing, and therapeutics. A deep understanding of nanoparticle magnetization dynamics is fundamental to optimization and further development of these applications. Here, a summary of theoretical models of nanoparticle dynamics is presented, and computational nonequilibrium models are outlined, which currently represent the most sophisticated methods for modeling nanoparticle dynamics. Nanoparticle magnetization response is explored in depth; the effect of applied field amplitude, as well as nanoparticle size, on the resulting rotation mechanism and timescale is investigated. Two applications in biomedicine, magnetic particle imaging and magnetic fluid hyperthermia, are highlighted.

摘要

磁性纳米粒子目前是广泛的生物医学应用的研究焦点,这些应用涵盖成像、传感和治疗等领域。深入了解纳米粒子磁化动力学是优化和进一步发展这些应用的基础。本文总结了纳米粒子动力学的理论模型,并概述了计算非平衡模型,这是目前用于模拟纳米粒子动力学的最复杂方法。本文深入探讨了纳米粒子磁化响应,研究了外加磁场幅度以及纳米粒子尺寸对旋转机制和时间尺度的影响。本文还重点介绍了生物医学中的两个应用,即磁粒子成像和磁流体热疗。

相似文献

[1]
Nonequilibrium Dynamics of Magnetic Nanoparticles with Applications in Biomedicine.

Adv Mater. 2021-6

[2]
Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia.

Int J Nanomedicine. 2017-8-28

[3]
Magnetic engineering nanoparticles: Versatile tools revolutionizing biomedical applications.

Biomater Adv. 2024-10

[4]
On the optimal choice of the exposure conditions and the nanoparticle features in magnetic nanoparticle hyperthermia.

Int J Hyperthermia. 2010

[5]
Biofunctionalization of magnetite nanoparticles with stevioside: effect on the size and thermal behaviour for use in hyperthermia applications.

Int J Hyperthermia. 2019-2-7

[6]
Magnetic nanoparticles adapted for specific biomedical applications.

Biomed Tech (Berl). 2015-10

[7]
Computational Modelling of Magnetic Nanoparticle Properties and In Vivo Responses.

Curr Med Chem. 2017

[8]
Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications.

Nanoscale. 2015-5-14

[9]
Improved efficiency of heat generation in nonlinear dynamics of magnetic nanoparticles.

Phys Rev E. 2016-1-14

[10]
Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.

Nanoscale. 2014-11-7

引用本文的文献

[1]
Magnetically induced magnetosome chain (MAGiC): A biogenic magnetic-particle-imaging tracer with high performance and navigability.

Sci Adv. 2025-8

[2]
Effects of excitation field amplitude on magnetic particle imaging performance: a modeling study.

J Phys D Appl Phys. 2025-7-28

[3]
Advances in magnetic particle imaging and perspectives on liver imaging.

ILIVER. 2022-11-8

[4]
Stimuli-responsive smart materials enabled high-performance biosensors for liquid biopsies.

J Nanobiotechnology. 2025-7-1

[5]
Recent Achievements and Perspectives in Smart Nano-in-Micro Platforms for Ocular Disease Treatment.

Int J Nanomedicine. 2025-6-17

[6]
A review of combined imaging and therapeutic applications based on MNMs.

Front Chem. 2025-5-26

[7]
Fundamentals and Applications of Dual-Frequency Magnetic Particle Spectroscopy: Review for Biomedicine and Materials Characterization.

Adv Sci (Weinh). 2025-4

[8]
Approaches and applications in transdermal and transpulmonary gene drug delivery.

Front Bioeng Biotechnol. 2025-1-15

[9]
Advances in engineering nanoparticles for magnetic particle imaging (MPI).

Sci Adv. 2025-1-10

[10]
Synthesis of Magnetic Luminescent Nanoparticle FeO@LaF:Eu,Ag@APTES@β-CD, a Potential Carrier of Antimicrobial Drug Ciprofloxacin.

Indian J Microbiol. 2024-12

本文引用的文献

[1]
Intracellular dynamics of superparamagnetic iron oxide nanoparticles for magnetic particle imaging.

Nanoscale. 2019-4-23

[2]
Discriminating nanoparticle core size using multi-contrast MPI.

Phys Med Biol. 2019-3-29

[3]
Spatial and Temperature Resolutions of Magnetic Nanoparticle Temperature Imaging with a Scanning Magnetic Particle Spectrometer.

Nanomaterials (Basel). 2018-10-23

[4]
Evaluating size-dependent relaxivity of PEGylated-USPIOs to develop gadolinium-free T1 contrast agents for vascular imaging.

J Biomed Mater Res A. 2018-9

[5]
The Fokker-Planck equation for coupled Brown-Néel-rotation.

Phys Med Biol. 2018-1-22

[6]
Magnetic Particle Imaging for Highly Sensitive, Quantitative, and Safe in Vivo Gut Bleed Detection in a Murine Model.

ACS Nano. 2017-11-30

[7]
Tomographic magnetic particle imaging of cancer targeted nanoparticles.

Nanoscale. 2017-12-7

[8]
Commentary on the clinical and preclinical dosage limits of interstitially administered magnetic fluids for therapeutic hyperthermia based on current practice and efficacy models.

Int J Hyperthermia. 2017-10-18

[9]
Magnetic Particle Imaging for Real-Time Perfusion Imaging in Acute Stroke.

ACS Nano. 2017-10-4

[10]
Towards Picogram Detection of Superparamagnetic Iron-Oxide Particles Using a Gradiometric Receive Coil.

Sci Rep. 2017-7-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索