Gudasz Cristian, Vachon Dominic, Prairie Yves T
Climate Impacts Research Centre, Department of Ecology, Environment and Geoscience, Umeå University, Umeå, Sweden.
Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec Canada.
Nat Water. 2025;3(7):818-830. doi: 10.1038/s44221-025-00461-4. Epub 2025 Jul 17.
As climate change and nutrient pollution intensify, understanding how millions of lakes will respond to such forcings as a global or regional collective has become urgent and yet capturing their role in Earth's system remain neither conceptually unified nor empirically constrained. Here we introduce a framework that aggregates individual lake hypsography and functional attributes into composite lakes globally, across climate zones or 1-degree Earth system grid cells. We find that globally, lake shape mirrors land rather than ocean, with shallow areas dominating. This structure reveals systematic differences between glaciated and non-glaciated regions and between colder and warmer climate zones. At the 1-degree Earth system grid cells, composite lakes group into five distinct clusters. Globally, an estimated 43% of lake volume and sediment surface area lie within the mixed layer. A composite mixed layer volume-to-sediment-surface-area ratio reveals dominant water column influence and biogeochemical sensitivities, with strong contrasts across climates and glacial histories. The proposed framework advances quantifying and understanding the collective role of lakes across spatial scales in Earth's system.
随着气候变化和营养物质污染加剧,了解数百万个湖泊作为一个全球或区域整体将如何应对这些驱动因素变得迫在眉睫,然而,要确定它们在地球系统中的作用,在概念上既未统一,在实证上也缺乏限制。在此,我们引入了一个框架,该框架将全球范围内、跨气候区或1度地球系统网格单元内的单个湖泊的深度曲线和功能属性汇总为复合湖泊。我们发现,全球范围内,湖泊形状反映的是陆地而非海洋,浅水区占主导。这种结构揭示了冰川作用地区和非冰川作用地区之间以及较冷和较暖气候区之间的系统性差异。在1度地球系统网格单元中,复合湖泊可分为五个不同的集群。全球范围内,估计43%的湖泊体积和沉积物表面积位于混合层内。复合混合层体积与沉积物表面积之比揭示了水柱的主要影响和生物地球化学敏感性,不同气候和冰川历史之间存在强烈差异。所提出的框架推动了对湖泊在地球系统中跨空间尺度的集体作用进行量化和理解。