Xu Jia, Li Haochen, Wang Feng, Yan Lian, Jin Gui, Chen Mingsheng, Li Gen, Qin Mingxin
College of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, China.
Department of Medical Engineering, General Hospital of Central Theater Command, Wuhan, Hubei, China.
Front Bioeng Biotechnol. 2025 Jul 9;13:1564510. doi: 10.3389/fbioe.2025.1564510. eCollection 2025.
The pressure reactivity index (PRx) is a key predictor of cerebrovascular function, widely used to guide and optimize therapeutic strategies in patients with acute brain injury. This study investigates a non-invasive bio-electromagnetic technique for monitoring and maintaining cerebrovascular function in a rabbit model of acute brain injury.
A coaxial parallel double-coil sensor was designed to detect changes in intracranial electromagnetic properties, measured as magnetic induction phase shifts (MIPS), which reflect cerebral blood volume fluctuations. A cerebrovascular function monitoring platform was constructed with this sensor, a vector network analyzer, a LabVIEW software platform, and a physiological signal acquisition device to record the MIPS and arterial blood pressure (ABP). In the animal experiment, a novel cerebrovascular function index Conductivity Reactivity index (CRx), established with MIPS and ABP, was to assess optimal cerebral blood perfusion pressure (CPP) for maintaining the cerebrovascular function in four gradients of CPP in acute brain injury model.
The results found that the CRx (-0.072 ± 0.203) was a significant negative correlation with the PRx (0.223 ± 0.203) (r = -0.447, P = 0.003). Under the optimal CPP determined by the CPP-CRx curve, the mean CRx (0.104 ± 0.170) indicated normal cerebrovascular function, which was significantly different from the other states (CRx = -0.127 ± 0.061, p = 0.009).
The study demonstrated that CRx has potential to reflect cerebrovascular function dynamics and assess optimal CPP, demonstrating the potential of bio-electromagnetic technology as a noninvasive indicator for monitoring cerebrovascular function.
压力反应性指数(PRx)是脑血管功能的关键预测指标,广泛用于指导和优化急性脑损伤患者的治疗策略。本研究调查了一种非侵入性生物电磁技术,用于监测和维持急性脑损伤兔模型中的脑血管功能。
设计了一种同轴平行双线圈传感器,以检测颅内电磁特性的变化,以磁感应相移(MIPS)来衡量,其反映脑血容量波动。使用该传感器、矢量网络分析仪、LabVIEW软件平台和生理信号采集设备构建了一个脑血管功能监测平台,以记录MIPS和动脉血压(ABP)。在动物实验中,用MIPS和ABP建立了一种新的脑血管功能指数——电导率反应性指数(CRx),以评估急性脑损伤模型中四个脑灌注压(CPP)梯度下维持脑血管功能的最佳脑灌注压。
结果发现CRx(-0.072±0.203)与PRx(0.223±0.203)呈显著负相关(r=-0.447,P=0.003)。在由CPP-CRx曲线确定的最佳CPP下,平均CRx(0.104±0.170)表明脑血管功能正常,与其他状态有显著差异(CRx=-0.127±0.061,p=0.009)。
该研究表明CRx有潜力反映脑血管功能动态并评估最佳CPP,证明了生物电磁技术作为监测脑血管功能的非侵入性指标的潜力。