Suppr超能文献

基于电磁耦合传感和图像特征分析的动态脑血流评估

Dynamic cerebral blood flow assessment based on electromagnetic coupling sensing and image feature analysis.

作者信息

Gong Zhiwei, Zeng Lingxi, Jiang Bin, Zhu Rui, Wang Junjie, Li Mingyan, Shao Ansheng, Lv Zexiang, Zhang Maoting, Guo Lei, Li Gen, Sun Jian, Chen Yujie

机构信息

School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China.

College of Artificial Intelligence, Chongqing University of Technology, Chongqing, China.

出版信息

Front Bioeng Biotechnol. 2024 Feb 21;12:1276795. doi: 10.3389/fbioe.2024.1276795. eCollection 2024.

Abstract

Dynamic assessment of cerebral blood flow (CBF) is crucial for guiding personalized management and treatment strategies, and improving the prognosis of stroke. However, a safe, reliable, and effective method for dynamic CBF evaluation is currently lacking in clinical practice. In this study, we developed a CBF monitoring system utilizing electromagnetic coupling sensing (ECS). This system detects variations in brain conductivity and dielectric constant by identifying the resonant frequency (RF) in an equivalent circuit containing both magnetic induction and electrical coupling. We evaluated the performance of the system using a self-made physical model of blood vessel pulsation to test pulsatile CBF. Additionally, we recruited 29 healthy volunteers to monitor cerebral oxygen (CO), cerebral blood flow velocity (CBFV) data and RF data before and after caffeine consumption. We analyzed RF and CBFV trends during immediate responses to abnormal intracranial blood supply, induced by changes in vascular stiffness, and compared them with CO data. Furthermore, we explored a method of dynamically assessing the overall level of CBF by leveraging image feature analysis. Experimental testing substantiates that this system provides a detection range and depth enhanced by three to four times compared to conventional electromagnetic detection techniques, thereby comprehensively covering the principal intracranial blood supply areas. And the system effectively captures CBF responses under different intravascular pressure stimulations. In healthy volunteers, as cerebral vascular stiffness increases and CO decreases due to caffeine intake, the RF pulsation amplitude diminishes progressively. Upon extraction and selection of image features, widely used machine learning algorithms exhibit commendable performance in classifying overall CBF levels. These results highlight that our proposed methodology, predicated on ECS and image feature analysis, enables the capture of immediate responses of abnormal intracranial blood supply triggered by alterations in vascular stiffness. Moreover, it provides an accurate diagnosis of the overall CBF level under varying physiological conditions.

摘要

动态评估脑血流量(CBF)对于指导个性化管理和治疗策略以及改善中风预后至关重要。然而,目前临床实践中缺乏一种安全、可靠且有效的动态CBF评估方法。在本研究中,我们开发了一种利用电磁耦合传感(ECS)的CBF监测系统。该系统通过识别包含磁感应和电耦合的等效电路中的共振频率(RF)来检测脑电导率和介电常数的变化。我们使用自制的血管搏动物理模型来测试脉动性CBF,以评估该系统的性能。此外,我们招募了29名健康志愿者,在摄入咖啡因前后监测脑氧(CO)、脑血流速度(CBFV)数据和RF数据。我们分析了血管僵硬度变化引起的颅内血液供应异常即时反应期间的RF和CBFV趋势,并将它们与CO数据进行比较。此外,我们探索了一种利用图像特征分析动态评估CBF总体水平的方法。实验测试证实,该系统提供的检测范围和深度比传统电磁检测技术提高了三到四倍,从而全面覆盖了主要的颅内血液供应区域。并且该系统能够有效捕获不同血管内压力刺激下的CBF反应。在健康志愿者中,由于摄入咖啡因导致脑血管僵硬度增加和CO降低,RF搏动幅度逐渐减小。在提取和选择图像特征后,广泛使用的机器学习算法在对CBF总体水平进行分类方面表现出良好的性能。这些结果表明,我们基于ECS和图像特征分析提出的方法能够捕获血管僵硬度变化引发的颅内血液供应异常的即时反应。此外,它还能在不同生理条件下准确诊断CBF的总体水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4e0/10915240/f38878ed09fc/fbioe-12-1276795-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验