Suppr超能文献

法拉第反应过程中微电极处的噪声研究。

Investigation of Noise at a Microelectrode during a Faradaic Reaction.

作者信息

Wheeler Kaden, Gott Joseph, Roehrich Brian, Chung Julia, Kajal Kajal, Syzdek Jaroslaw, Hespanha Joao, Sepunaru Lior

机构信息

Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States.

Interdepartmental Program in Biomolecular Science and Engineering, University of California at Santa Barbara, Santa Barbara, California 93106, United States.

出版信息

ACS Electrochem. 2025 Apr 3;1(4):552-559. doi: 10.1021/acselectrochem.4c00117. Epub 2025 Feb 22.

Abstract

Measurement of small currents is often impeded by a suboptimal signal-to-noise ratio, largely due to background noise. This background noise significantly constrains the range of catalysts accessible for interrogation via micro- and nanoscale electrochemistry. In response, this work reveals how background noise scales in the presence of induced Faradaic reactions. We measured noise under a series of electrochemical conditions and discovered that the induced noise from a Faradaic reaction scales directly with current. Complementary electrochemical impedance spectroscopy measurements demonstrated that diffusional resistance dictates the noise of Faradaic reactions, independent of the electrochemical mechanism. The noise source is thermal in origin and propagates in a predictable trend, which is inversely proportional to the equivalent diffusional resistance of the analyte. The universality of the observed phenomenon allows for better deconvolution of measured charge from background noise, thus assisting in achieving higher resolution and measurement precision, which is a key in micro- and nanoscale electrochemical measurements.

摘要

小电流的测量常常受到信噪比欠佳的阻碍,这主要是由于背景噪声所致。这种背景噪声显著限制了可通过微纳尺度电化学进行检测的催化剂范围。作为回应,这项工作揭示了在存在诱导法拉第反应的情况下背景噪声是如何变化的。我们在一系列电化学条件下测量了噪声,发现法拉第反应产生的诱导噪声与电流直接成正比。互补的电化学阻抗谱测量表明,扩散电阻决定了法拉第反应的噪声,与电化学机制无关。噪声源源于热,且以可预测的趋势传播,该趋势与分析物的等效扩散电阻成反比。所观察到现象的普遍性有助于更好地从背景噪声中解卷积测量电荷,从而有助于实现更高的分辨率和测量精度,这是微纳尺度电化学测量中的关键。

相似文献

1
Investigation of Noise at a Microelectrode during a Faradaic Reaction.法拉第反应过程中微电极处的噪声研究。
ACS Electrochem. 2025 Apr 3;1(4):552-559. doi: 10.1021/acselectrochem.4c00117. Epub 2025 Feb 22.
4
Interventions to prevent occupational noise-induced hearing loss.预防职业性噪声性听力损失的干预措施。
Cochrane Database Syst Rev. 2017 Jul 7;7(7):CD006396. doi: 10.1002/14651858.CD006396.pub4.
7
Non-invasive brain stimulation techniques for chronic pain.用于慢性疼痛的非侵入性脑刺激技术
Cochrane Database Syst Rev. 2018 Mar 16;3(3):CD008208. doi: 10.1002/14651858.CD008208.pub4.
10
Topical antibiotics with steroids for chronic suppurative otitis media.用于慢性化脓性中耳炎的含类固醇局部用抗生素
Cochrane Database Syst Rev. 2025 Jun 9;6(6):CD013054. doi: 10.1002/14651858.CD013054.pub3.

本文引用的文献

2
Electrical noise in electrolytes: a theoretical perspective.电解质中的电噪声:理论视角
Faraday Discuss. 2023 Oct 12;246(0):198-224. doi: 10.1039/d3fd00026e.
3
Electrochemical Shot Noise of a Redox Monolayer.电化学单层氧化还原的电流噪声。
Phys Rev Lett. 2023 May 26;130(21):218001. doi: 10.1103/PhysRevLett.130.218001.
7
8
Impedance scaling for gold and platinum microelectrodes.金和铂微电极的阻抗缩放。
J Neural Eng. 2021 Sep 9;18(5). doi: 10.1088/1741-2552/ac20e5.
9
Single enzyme electroanalysis.单一酶电化学生物传感器。
Analyst. 2021 Jun 7;146(11):3413-3421. doi: 10.1039/d1an00230a. Epub 2021 Apr 20.
10
The noise and impedance of microelectrodes.微电极的噪声和阻抗。
J Neural Eng. 2020 Oct 15;17(5):052001. doi: 10.1088/1741-2552/abb3b4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验