Li Jinpeng, Li Chao, Han Yun, Hu Yulian, Yang Jian, Xu Heting, Chen Xinggui, Yang Ming, Zuo Jing, Tang Yizhi, Lei Changwei, Li Cui, Wang Hongning
Animal Disease Prevention and Green Development Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China.
Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
J Extracell Vesicles. 2025 Jul;14(7):e70131. doi: 10.1002/jev2.70131.
Antibiotic exposure substantially alters the production mechanisms of bacterial extracellular vesicles (BEVs), which serve as carriers for intercellular exchange of DNA, proteins, and nutrients, yet the underlying mechanisms remain elusive. Here, using Escherichia coli as a model, we uncover how antibiotic exposure enhances BEV secretion, cargo enrichment, and motility. Our results demonstrate that enrofloxacin (ENR) triggers the SOS response, leading to upregulation of the endolysin genes essd-1, rrrd, and rzod, causing peptidoglycan layer damage and promoting modest BEV formation with encapsulated bioactive components such as DNA and proteins. More critically, ENR suppresses ompR, a key regulator in the OmpR/EnvZ two-component system, downregulating the expression of the outer membrane (OM) protein OmpC and its associated Mla-OmpC lipopolysaccharide transport complex. This destabilization of the OM further facilitates BEV formation and cargo encapsulation. The ΔompR mutant in E. coli also exhibits reduced type I fimbriae and enhanced BEV motility, indicating that the OmpR/EnvZ system modulates BEV dynamics via type I fimbriae regulation. These findings reveal a novel mechanism by which E. coli adapts to sub-inhibitory antibiotic stress by modulating BEV formation and motility, with implications for biomedical nanodelivery applications.
抗生素暴露会显著改变细菌细胞外囊泡(BEV)的产生机制,BEV作为DNA、蛋白质和营养物质细胞间交换的载体,但其潜在机制仍不清楚。在这里,我们以大肠杆菌为模型,揭示了抗生素暴露如何增强BEV的分泌、货物富集和运动性。我们的结果表明,恩诺沙星(ENR)触发SOS反应,导致内溶素基因essd-1、rrrd和rzod上调,引起肽聚糖层损伤,并促进含有DNA和蛋白质等生物活性成分的适度BEV形成。更关键的是,ENR抑制OmpR/EnvZ双组分系统中的关键调节因子OmpR,下调外膜(OM)蛋白OmpC及其相关的Mla-OmpC脂多糖转运复合物的表达。OM的这种不稳定进一步促进了BEV的形成和货物封装。大肠杆菌中的ΔompR突变体也表现出I型菌毛减少和BEV运动性增强,表明OmpR/EnvZ系统通过调节I型菌毛来调节BEV的动态变化。这些发现揭示了一种新机制,即大肠杆菌通过调节BEV的形成和运动性来适应亚抑制性抗生素应激,这对生物医学纳米递送应用具有重要意义。