Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, People's Republic of China.
Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125.
Proc Natl Acad Sci U S A. 2024 Jul 23;121(30):e2403460121. doi: 10.1073/pnas.2403460121. Epub 2024 Jul 15.
Autonomous nanorobots represent an advanced tool for precision therapy to improve therapeutic efficacy. However, current nanorobotic designs primarily rely on inorganic materials with compromised biocompatibility and limited biological functions. Here, we introduce enzyme-powered bacterial outer membrane vesicle (OMV) nanorobots. The immobilized urease on the OMV membrane catalyzes the decomposition of bioavailable urea, generating effective propulsion for nanorobots. This OMV nanorobot preserves the unique features of OMVs, including intrinsic biocompatibility, immunogenicity, versatile surface bioengineering for desired biofunctionalities, capability of cargo loading and protection. We present OMV-based nanorobots designed for effective tumor therapy by leveraging the membrane properties of OMVs. These involve surface bioengineering of robotic body with cell-penetrating peptide for tumor targeting and penetration, which is further enhanced by active propulsion of nanorobots. Additionally, OMV nanorobots can effectively safeguard the loaded gene silencing tool, small interfering RNA (siRNA), from enzymatic degradation. Through systematic in vitro and in vivo studies using a rodent model, we demonstrate that these OMV nanorobots substantially enhanced siRNA delivery and immune stimulation, resulting in the utmost effectiveness in tumor suppression when juxtaposed with static groups, particularly evident in the orthotopic bladder tumor model. This OMV nanorobot opens an inspiring avenue to design advanced medical robots with expanded versatility and adaptability, broadening their operation scope in practical biomedical domains.
自主纳米机器人代表了精准治疗的先进工具,可以提高治疗效果。然而,目前的纳米机器人设计主要依赖于生物兼容性差和生物功能有限的无机材料。在这里,我们介绍了酶驱动的细菌外膜囊泡(OMV)纳米机器人。固定在 OMV 膜上的脲酶催化生物可利用尿素的分解,为纳米机器人提供有效的推进力。这种 OMV 纳米机器人保留了 OMV 的独特特性,包括内在的生物兼容性、免疫原性、多功能表面生物工程以实现所需的生物功能、货物装载和保护能力。我们提出了基于 OMV 的纳米机器人,通过利用 OMV 的膜特性来实现有效的肿瘤治疗。这些涉及到机器人主体的表面生物工程,使用穿透肽进行肿瘤靶向和穿透,纳米机器人的主动推进进一步增强了这一作用。此外,OMV 纳米机器人可以有效地保护负载的基因沉默工具,小干扰 RNA(siRNA),免受酶的降解。通过使用啮齿动物模型进行的系统体外和体内研究,我们证明这些 OMV 纳米机器人显著增强了 siRNA 的递呈和免疫刺激,在与静态组相比时,在肿瘤抑制方面达到了最佳效果,在原位膀胱癌模型中尤为明显。这种 OMV 纳米机器人为设计具有扩展多功能性和适应性的先进医疗机器人开辟了一条令人鼓舞的途径,扩大了它们在实际生物医学领域的操作范围。