Suppr超能文献

神经外科中的ChatGPT-4:改进患者教育材料

ChatGPT-4 in Neurosurgery: Improving Patient Education Materials.

作者信息

Singh Aman, Gupta Nithin, Chien Derek L, Singh Rohin, Sachdeva Aanya, Danasekaran Keerthana, Gajjar Avi, Houk Clifton, Jalal Muhammad, Li Adam, Whyte Racquel, Stone Jonathan J, Vates G Edward

机构信息

Department of Neurosurgery, University of Rochester, Rochester, New York, USA.

Campbell University School of Osteopathic Medicine, Lillington, North Carolina, USA.

出版信息

Neurosurgery. 2025 Jul 24. doi: 10.1227/neu.0000000000003606.

Abstract

BACKGROUND AND OBJECTIVES

Adequate understanding of health information has been shown to be a stronger determinant of health than several demographic factors, including age, income, or employment status. However, existing neurosurgical patient education materials (PEMs) may be too complex for the average American and may contribute to poor health literacy. Large language model chatbots may provide a rapid and low-cost means of rewriting existing PEMs at a lower reading level to improve patient understanding and overall health literacy.

METHODS

Neurosurgical PEMs pertaining to stroke, laminectomy, pituitary tumors, epilepsy, and hydrocephalus published by the top 100 US hospitals were collected. For all PEMs, common measures of reading level and difficulty were generated, including Flesch Kincaid Grade Level, Flesch Reading Ease (FRE), Gunning Fog Index, Automated Readability Index, Coleman-Liau Index, and the Simple Measure of Gobbledygook Index readability score. ChatGPT-4 was then used to rewrite 25 randomly selected PEMs at or near the reading level of the average American (eighth-grade reading level). The rewritten PEMs were assessed for readability using the same measures of reading level and difficulty.

RESULTS

The mean FRE for PEMs on all 5 common neurosurgical conditions were significantly greater than corresponding scores for an eighth-grade reading level (P < .001). The mean Kincaid value, Automated Readability Index, Coleman-Liau score, Gunning Fog Index, and Simple Measure of Gobbledygook Index for PEMs on each condition were all significantly greater than an eighth-grade reading level (P < .01). The mean FRE score for rewritten PEMs on each topic were significantly lower than nonrewritten materials (P < .01) except spinal stenosis (P = .104) and were validated for accuracy.

CONCLUSION

Existing PEMs published by the top US hospitals for common neurosurgical conditions may be too complicated for the average American that reads at an eighth-grade level. Large language model chatbots can be used to efficiently rewrite these PEMs at a lower reading level while maintaining the accuracy of the material.

摘要

背景与目的

充分理解健康信息已被证明是比年龄、收入或就业状况等多种人口统计学因素更强的健康决定因素。然而,现有的神经外科患者教育材料(PEMs)对于普通美国人来说可能过于复杂,可能导致健康素养低下。大语言模型聊天机器人可能提供一种快速且低成本的方式,以较低的阅读水平重写现有的PEMs,从而提高患者的理解能力和整体健康素养。

方法

收集了美国排名前100的医院发布的与中风、椎板切除术、垂体瘤、癫痫和脑积水相关的神经外科PEMs。对于所有PEMs,生成了阅读水平和难度的常用指标,包括弗莱什·金凯德年级水平、弗莱什阅读易读性(FRE)、冈宁迷雾指数、自动可读性指数、科尔曼-廖指数以及简明晦涩指数可读性得分。然后使用ChatGPT-4以普通美国人的阅读水平(八年级阅读水平)或接近该水平重写25篇随机选择的PEMs。使用相同的阅读水平和难度指标对重写后的PEMs进行可读性评估。

结果

所有5种常见神经外科疾病的PEMs的平均FRE显著高于八年级阅读水平的相应得分(P < .001)。每种疾病的PEMs的平均金凯德值、自动可读性指数、科尔曼-廖得分、冈宁迷雾指数和简明晦涩指数均显著高于八年级阅读水平(P < .01)。除脊柱狭窄(P = .104)外,每个主题重写后的PEMs的平均FRE得分均显著低于未重写的材料(P < .01),且准确性得到验证。

结论

美国顶尖医院发布的针对常见神经外科疾病的现有PEMs对于八年级阅读水平的普通美国人来说可能过于复杂。大语言模型聊天机器人可用于在保持材料准确性的同时,以较低的阅读水平有效地重写这些PEMs。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验