Suppr超能文献

鉴定SEC16B作为葡萄糖稳态的新型调节因子。

Identification of SEC16B as a novel regulator of glucose homeostasis.

作者信息

Zhang Ruo-Xin, Li An-Qi, Zhao Xin-Yuan, Wang Bei, Yang Zhi-Can, Liu Zhi-Ying, Ji Chen, Shi Yan-Chuan, Neely G Gregory, Wang Qiao-Ping

机构信息

Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.

Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.

出版信息

Diabetologia. 2025 Jul 24. doi: 10.1007/s00125-025-06501-8.

Abstract

AIMS/HYPOTHESIS: Glucose homeostasis, essential for metabolic health, requires coordinated insulin and glucagon activity to maintain blood glucose balance. Dysregulation of glucose homeostasis causes hyperglycaemia and glucose intolerance, hallmark features of type 2 diabetes. While SEC16 homologue B (SEC16B), an endoplasmic reticulum export factor, has been linked to obesity, type 2 diabetes and lipid metabolism, its role in glucose regulation remains poorly defined. This study aims to investigate SEC16B's contribution to glucose homeostasis by systematically dissecting its conserved physiological mechanisms across species.

METHODS

To interrogate SEC16B's role, we combined Drosophila genetics (RNA interference-mediated dSec16 knockdown) with murine models (Sec16b deletion) under standard or high-fat diet conditions. Glucose and insulin tolerance tests assessed glucose homeostasis. Mechanistic insights into beta cell dysfunction were derived from immunostaining, glucose-stimulated insulin secretion assays and RNA-seq profiling of murine pancreatic islets.

RESULTS

Both disruption of dSec16 in Drosophila and Sec16b deletion in mice triggered glucose intolerance under standard diet conditions, recapitulating conserved metabolic dysfunction. In addition, Sec16b loss impaired glycaemic control in mice fed a high-fat diet. Mechanistically, Sec16b deficiency impairs insulin secretion by downregulating cholinergic signalling and compromising intracellular Ca influx in pancreatic beta cells.

CONCLUSIONS/INTERPRETATION: Our study reveals SEC16B, a genome-wide association study-identified obesity risk gene, as an evolutionarily conserved regulator of glucose homeostasis. By linking SEC16B to cholinergic-driven insulin secretion and calcium dynamics, we resolve a mechanistic gap in beta cell dysfunction and metabolic disease. This finding provides novel insights into the mechanisms underlying glucose homeostasis and may enhance our understanding of potential treatments for metabolic diseases.

摘要

目的/假设:葡萄糖稳态是代谢健康所必需的,需要胰岛素和胰高血糖素的协同活动来维持血糖平衡。葡萄糖稳态失调会导致高血糖和葡萄糖不耐受,这是2型糖尿病的标志性特征。虽然内质网输出因子SEC16同源物B(SEC16B)与肥胖、2型糖尿病和脂质代谢有关,但其在葡萄糖调节中的作用仍不清楚。本研究旨在通过系统剖析其在不同物种间保守的生理机制,探讨SEC16B对葡萄糖稳态的贡献。

方法

为了探究SEC16B的作用,我们在标准或高脂饮食条件下,将果蝇遗传学方法(RNA干扰介导的dSec16基因敲低)与小鼠模型(Sec16b基因缺失)相结合。通过葡萄糖和胰岛素耐量试验评估葡萄糖稳态。通过免疫染色、葡萄糖刺激的胰岛素分泌试验和小鼠胰岛的RNA测序分析,深入了解β细胞功能障碍的机制。

结果

果蝇中dSec16的破坏和小鼠中Sec16b的缺失在标准饮食条件下均引发葡萄糖不耐受,重现了保守的代谢功能障碍。此外,Sec16b缺失损害了高脂饮食喂养小鼠的血糖控制。机制上,Sec16b缺乏通过下调胆碱能信号和损害胰腺β细胞内的钙内流来损害胰岛素分泌。

结论/解读:我们的研究揭示了SEC16B,一个全基因组关联研究确定的肥胖风险基因,是葡萄糖稳态的进化保守调节因子。通过将SEC16B与胆碱能驱动的胰岛素分泌和钙动力学联系起来,我们解决了β细胞功能障碍和代谢疾病中的一个机制空白。这一发现为葡萄糖稳态的潜在机制提供了新的见解,并可能增进我们对代谢疾病潜在治疗方法的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验