Suppr超能文献

精确广义I-II期设计

Precision generalized phase I-II designs.

作者信息

Zhao Saijun, Thall Peter F, Yuan Ying, Lee Juhee, Msaouel Pavlos, Zang Yong

机构信息

Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.

Department of Biostatistics, M.D. Anderson Cancer Center, Houston, TX 77030, USA.

出版信息

Biometrics. 2025 Jul 3;81(3). doi: 10.1093/biomtc/ujaf043.

Abstract

A new family of precision Bayesian dose optimization designs, PGen I-II, based on early efficacy, early toxicity, and long-term time to treatment failure is proposed. A PGen I-II design refines a Gen I-II design by accounting for patient heterogeneity characterized by subgroups that may be defined by prognostic levels, disease subtypes, or biomarker categories. The design makes subgroup-specific decisions, which may be to drop an unacceptably toxic or inefficacious dose, randomize patients among acceptable doses, or identify a best dose in terms of treatment success defined in terms of time to failure over long-term follow-up. A piecewise exponential distribution for failure time is assumed, including subgroup-specific effects of dose, response, and toxicity. Latent variables are used to adaptively cluster subgroups found to have similar dose-outcome distributions, with the model simplified to borrow strength between subgroups in the same cluster. Guidelines and user-friendly computer software for implementing the design are provided. A simulation study is reported that shows the PGen I-II design is superior to similarly structured designs that either assume patient homogeneity or conduct separate trials within subgroups.

摘要

提出了一种基于早期疗效、早期毒性和长期治疗失败时间的精密贝叶斯剂量优化设计新家族PGen I-II。PGen I-II设计通过考虑以预后水平、疾病亚型或生物标志物类别定义的亚组所表征的患者异质性来完善I-II期设计。该设计做出亚组特异性决策,可能是放弃毒性不可接受或无效的剂量,在可接受剂量之间随机分配患者,或者根据长期随访中失败时间定义的治疗成功情况确定最佳剂量。假设失败时间服从分段指数分布,包括剂量、反应和毒性的亚组特异性效应。使用潜在变量对发现具有相似剂量-结果分布的亚组进行自适应聚类,简化模型以在同一聚类中的亚组之间借用强度。提供了实施该设计的指南和用户友好的计算机软件。报告了一项模拟研究,表明PGen I-II设计优于那些要么假设患者同质性要么在亚组内进行单独试验的结构相似的设计。

相似文献

1
Precision generalized phase I-II designs.
Biometrics. 2025 Jul 3;81(3). doi: 10.1093/biomtc/ujaf043.
2
REDOMA: Bayesian random-effects dose-optimization meta-analysis using spike-and-slab priors.
Stat Med. 2024 Aug 15;43(18):3484-3502. doi: 10.1002/sim.10107. Epub 2024 Jun 10.
3
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
4
Drugs for preventing postoperative nausea and vomiting in adults after general anaesthesia: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Oct 19;10(10):CD012859. doi: 10.1002/14651858.CD012859.pub2.
5
EORTC guidelines for the use of erythropoietic proteins in anaemic patients with cancer: 2006 update.
Eur J Cancer. 2007 Jan;43(2):258-70. doi: 10.1016/j.ejca.2006.10.014. Epub 2006 Dec 19.
6
Impact of residual disease as a prognostic factor for survival in women with advanced epithelial ovarian cancer after primary surgery.
Cochrane Database Syst Rev. 2022 Sep 26;9(9):CD015048. doi: 10.1002/14651858.CD015048.pub2.
7
A Bayesian pharmacokinetics integrated phase I-II design to optimize dose-schedule regimes.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae034.
9
Healthcare outcomes assessed with observational study designs compared with those assessed in randomized trials.
Cochrane Database Syst Rev. 2014 Apr 29;2014(4):MR000034. doi: 10.1002/14651858.MR000034.pub2.
10
Systemic treatments for metastatic cutaneous melanoma.
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.

本文引用的文献

1
Phase I/II Design for Selecting Subgroup-Specific Optimal Biological Doses for Prespecified Subgroups.
Stat Med. 2024 Dec 10;43(28):5401-5411. doi: 10.1002/sim.10256. Epub 2024 Oct 18.
2
A Personalized Dose-Finding Algorithm Based on Adaptive Gaussian Process Regression.
Pharm Stat. 2024 Nov-Dec;23(6):1181-1205. doi: 10.1002/pst.2417. Epub 2024 Aug 9.
3
Generalized phase I-II designs to increase long term therapeutic success rate.
Pharm Stat. 2023 Jul-Aug;22(4):692-706. doi: 10.1002/pst.2301. Epub 2023 Apr 11.
5
Precision Bayesian phase I-II dose-finding based on utilities tailored to prognostic subgroups.
Stat Med. 2021 Oct 30;40(24):5199-5217. doi: 10.1002/sim.9120. Epub 2021 Jul 9.
7
Bayesian Phase I/II Biomarker-based Dose Finding for Precision Medicine with Molecularly Targeted Agents.
J Am Stat Assoc. 2017;112(518):508-520. doi: 10.1080/01621459.2016.1228534. Epub 2017 Jul 13.
8
Adaptive randomization to improve utility-based dose-finding with bivariate ordinal outcomes.
J Biopharm Stat. 2012;22(4):785-801. doi: 10.1080/10543406.2012.676586.
9
Dose-finding based on efficacy-toxicity trade-offs.
Biometrics. 2004 Sep;60(3):684-93. doi: 10.1111/j.0006-341X.2004.00218.x.
10
Cancer phase I clinical trials: efficient dose escalation with overdose control.
Stat Med. 1998 May 30;17(10):1103-20. doi: 10.1002/(sici)1097-0258(19980530)17:10<1103::aid-sim793>3.0.co;2-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验