Suppr超能文献

基于贝叶斯的 I/II 期生物标志物指导的剂量探索,用于分子靶向药物的精准医学。

Bayesian Phase I/II Biomarker-based Dose Finding for Precision Medicine with Molecularly Targeted Agents.

作者信息

Guo Beibei, Yuan Ying

机构信息

Department of Experimental Statistics, Louisiana State University, Baton Rouge, LA 70803, U.S.A.

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, U.S.A.,

出版信息

J Am Stat Assoc. 2017;112(518):508-520. doi: 10.1080/01621459.2016.1228534. Epub 2017 Jul 13.

Abstract

The optimal dose for treating patients with a molecularly targeted agent may differ according to the patient's individual characteristics, such as biomarker status. In this article, we propose a Bayesian phase I/II dose-finding design to find the optimal dose that is personalized for each patient according to his/her biomarker status. To overcome the curse of dimensionality caused by the relatively large number of biomarkers and their interactions with the dose, we employ canonical partial least squares (CPLS) to extract a small number of components from the covariate matrix containing the dose, biomarkers, and dose-by-biomarker interactions. Using these components as the covariates, we model the ordinal toxicity and efficacy using the latent-variable approach. Our model accounts for important features of molecularly targeted agents. We quantify the desirability of the dose using a utility function and propose a two-stage dose-finding algorithm to find the personalized optimal dose according to each patient's individual biomarker profile. Simulation studies show that our proposed design has good operating characteristics, with a high probability of identifying the personalized optimal dose.

摘要

用于治疗分子靶向药物患者的最佳剂量可能因患者的个体特征(如生物标志物状态)而异。在本文中,我们提出了一种贝叶斯I/II期剂量探索设计,以根据每个患者的生物标志物状态找到个性化的最佳剂量。为了克服由相对大量的生物标志物及其与剂量的相互作用所导致的维度灾难,我们采用规范偏最小二乘法(CPLS)从包含剂量、生物标志物以及剂量与生物标志物相互作用的协变量矩阵中提取少量成分。将这些成分用作协变量,我们使用潜变量方法对有序毒性和疗效进行建模。我们的模型考虑了分子靶向药物的重要特征。我们使用效用函数量化剂量的合意性,并提出一种两阶段剂量探索算法,以根据每个患者的个体生物标志物概况找到个性化的最佳剂量。模拟研究表明,我们提出的设计具有良好的操作特性,识别个性化最佳剂量的概率很高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87f6/7451208/8d1dfa564856/nihms-1502782-f0001.jpg

相似文献

4
9
A dose-finding approach for genomic patterns in phase I trials.I 期临床试验中基因组模式的剂量发现方法。
J Biopharm Stat. 2020 Sep 2;30(5):834-853. doi: 10.1080/10543406.2020.1744619. Epub 2020 Apr 20.

引用本文的文献

1
Precision generalized phase I-II designs.精确广义I-II期设计
Biometrics. 2025 Jul 3;81(3). doi: 10.1093/biomtc/ujaf043.
9
Challenges in the combination of radiotherapy and immunotherapy for breast cancer.乳腺癌放化疗联合治疗的挑战。
Expert Rev Anticancer Ther. 2023 Apr;23(4):375-383. doi: 10.1080/14737140.2023.2188196. Epub 2023 Apr 11.

本文引用的文献

3
Patient-specific dose finding based on bivariate outcomes and covariates.基于双变量结果和协变量的个体化剂量确定。
Biometrics. 2008 Dec;64(4):1126-36. doi: 10.1111/j.1541-0420.2008.01009.x. Epub 2008 Mar 19.
7
Continual reassessment method for ordered groups.有序组的连续重新评估方法。
Biometrics. 2003 Jun;59(2):430-40. doi: 10.1111/1541-0420.00050.
10
Improved designs for dose escalation studies using pharmacokinetic measurements.利用药代动力学测量进行剂量递增研究的改进设计。
Stat Med. 1996 Aug 15;15(15):1605-18. doi: 10.1002/(SICI)1097-0258(19960815)15:15<1605::AID-SIM325>3.0.CO;2-2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验