Guo Beibei, Yuan Ying
Department of Experimental Statistics, Louisiana State University, Baton Rouge, LA 70803, U.S.A.
Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, U.S.A.,
J Am Stat Assoc. 2017;112(518):508-520. doi: 10.1080/01621459.2016.1228534. Epub 2017 Jul 13.
The optimal dose for treating patients with a molecularly targeted agent may differ according to the patient's individual characteristics, such as biomarker status. In this article, we propose a Bayesian phase I/II dose-finding design to find the optimal dose that is personalized for each patient according to his/her biomarker status. To overcome the curse of dimensionality caused by the relatively large number of biomarkers and their interactions with the dose, we employ canonical partial least squares (CPLS) to extract a small number of components from the covariate matrix containing the dose, biomarkers, and dose-by-biomarker interactions. Using these components as the covariates, we model the ordinal toxicity and efficacy using the latent-variable approach. Our model accounts for important features of molecularly targeted agents. We quantify the desirability of the dose using a utility function and propose a two-stage dose-finding algorithm to find the personalized optimal dose according to each patient's individual biomarker profile. Simulation studies show that our proposed design has good operating characteristics, with a high probability of identifying the personalized optimal dose.
用于治疗分子靶向药物患者的最佳剂量可能因患者的个体特征(如生物标志物状态)而异。在本文中,我们提出了一种贝叶斯I/II期剂量探索设计,以根据每个患者的生物标志物状态找到个性化的最佳剂量。为了克服由相对大量的生物标志物及其与剂量的相互作用所导致的维度灾难,我们采用规范偏最小二乘法(CPLS)从包含剂量、生物标志物以及剂量与生物标志物相互作用的协变量矩阵中提取少量成分。将这些成分用作协变量,我们使用潜变量方法对有序毒性和疗效进行建模。我们的模型考虑了分子靶向药物的重要特征。我们使用效用函数量化剂量的合意性,并提出一种两阶段剂量探索算法,以根据每个患者的个体生物标志物概况找到个性化的最佳剂量。模拟研究表明,我们提出的设计具有良好的操作特性,识别个性化最佳剂量的概率很高。