Suppr超能文献

基于用户行为建模和预测分析的数据驱动型个性化营销策略优化:可持续的市场细分与目标定位。

Data-driven personalized marketing strategy optimization based on user behavior modeling and predictive analytics: Sustainable market segmentation and targeting.

作者信息

Sun Bin

机构信息

School of Economics and Management, Changchun Finance College, Changchun, Jilin, China.

出版信息

PLoS One. 2025 Jul 24;20(7):e0328151. doi: 10.1371/journal.pone.0328151. eCollection 2025.

Abstract

Personalized recommendation remains a central challenge in modern marketing systems due to the complexity of user-product-query interactions. In this study, we propose a novel framework called DP-GCN (Deterministic Policy Graph Convolutional Network), which integrates multi-level Graph Convolutional Networks (GCNs) with Deep Deterministic Policy Gradient (DDPG) reinforcement learning to model heterogeneous information networks composed of users, products, and search queries. The proposed framework consists of three key components: (1) a graph-based embedding module to capture multi-relational structures; (2) a fusion layer that integrates dynamic and static features from users and items; and (3) a reinforcement learning layer that adaptively updates recommendation policies based on user feedback. We evaluate our model on several public benchmark datasets and a real-world dataset collected from a local e-commerce platform. Results demonstrate that DP-GCN consistently outperforms state-of-the-art baselines in AUC, Precision@K, and NDCG@K. The findings highlight the effectiveness of combining graph-based relational modeling with reinforcement learning for improving both the accuracy and adaptability of personalized recommendation systems.

摘要

由于用户-产品-查询交互的复杂性,个性化推荐仍然是现代营销系统中的一个核心挑战。在本研究中,我们提出了一种名为DP-GCN(确定性策略图卷积网络)的新颖框架,该框架将多级图卷积网络(GCN)与深度确定性策略梯度(DDPG)强化学习相结合,以对由用户、产品和搜索查询组成的异构信息网络进行建模。所提出的框架由三个关键组件组成:(1)一个基于图的嵌入模块,用于捕获多关系结构;(2)一个融合层,用于整合来自用户和物品的动态和静态特征;(3)一个强化学习层,用于根据用户反馈自适应地更新推荐策略。我们在几个公共基准数据集和从本地电子商务平台收集的真实世界数据集上对我们的模型进行了评估。结果表明,DP-GCN在AUC、Precision@K和NDCG@K方面始终优于当前最先进的基线。这些发现突出了将基于图的关系建模与强化学习相结合对于提高个性化推荐系统的准确性和适应性的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d26d/12288996/77f32f01e5dd/pone.0328151.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验