Arif Yasra, Heinrichs-Graham Elizabeth, Wildy Alexa M, Ward Thomas W, Diedrich Augusto, Embury Christine M, Rempe Maggie P, Glesinger Ryan J, Shen Zhiying, McDonald Kellen M, Huang Peihan J, Bashford Seth, Taylor Brittany K, Kurz Max J, Wilson Tony W
Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, 68010, USA.
Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, 68010, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, 68178, USA.
Neuroimage. 2025 Sep;318:121393. doi: 10.1016/j.neuroimage.2025.121393. Epub 2025 Jul 22.
Sensory gating (SG) is a protective mechanism that prevents sensory overload by attenuating neural responses to repeated stimuli while allowing allocation of neural resources to salient inputs. While studies using conventional, cryogenic magnetoencephalography (MEG) have provided a foundational understanding of the neurophysiological spectro-temporal profile of sensory gating in somatosensory cortices, its utility in diverse populations is constrained by technical limitations, including movement restriction and a one-size-fits-all helmet design. Recent developments in optically pumped magnetometry (OPM) aim to overcome these constraints by providing greater tolerance to movement and customizable helmet sizes. A small number of studies have documented the reliability of OPM in mapping somatosensory responses to median nerve stimulation using OPM; however, none have examined SG. In this study, we utilized a whole-head 128-channel OPM system and a paired-pulse median nerve stimulation paradigm to examine somato-SG and map the precise spectro-temporal cortical dynamics in a group of 31 healthy adults. Neural responses per stimulation were imaged in both the time-frequency and time domains, and voxel time series data were extracted to quantify the dynamics of somato-SG. Robust gating effects were observed in the peak and average neural responses within the primary somatosensory cortices, in both the oscillatory and time domains. These findings underscore OPM's ability to precisely resolve the spatiotemporal neural dynamics of somato-SG and stress the utility of OPM in examining somatosensory processes across developmental trajectories extending down to infants, as well as in clinical populations.
感觉门控(SG)是一种保护机制,它通过减弱对重复刺激的神经反应来防止感觉过载,同时允许将神经资源分配给突出的输入。虽然使用传统的低温脑磁图(MEG)进行的研究已经对体感皮层中感觉门控的神经生理频谱-时间特征有了基本的了解,但其在不同人群中的应用受到技术限制,包括运动限制和一刀切的头盔设计。光泵磁力测量(OPM)的最新进展旨在通过对运动具有更高的耐受性和可定制的头盔尺寸来克服这些限制。少数研究记录了OPM在绘制使用OPM对正中神经刺激的体感反应方面的可靠性;然而,没有人研究过感觉门控。在本研究中,我们利用全头128通道OPM系统和配对脉冲正中神经刺激范式,在31名健康成年人中检查体感感觉门控并绘制精确的频谱-时间皮层动力学图。在时频和时域中对每次刺激的神经反应进行成像,并提取体素时间序列数据以量化体感感觉门控的动力学。在初级体感皮层内的峰值和平均神经反应中,在振荡和时域中均观察到了强大的门控效应。这些发现强调了OPM精确解析体感感觉门控时空神经动力学的能力,并强调了OPM在研究包括婴儿在内的整个发育轨迹以及临床人群中的体感过程方面的实用性。