Suppr超能文献

一种基于幂法的新型超越隐喻元启发式算法。

A novel transcendental metaphor metaheuristic algorithm based on power method.

作者信息

Zhang Huiying, Wu Hanshuo, Gong Yifei, Pan Xiao, Zhong Qipeng

机构信息

College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin, 132000, Jilin, China.

出版信息

Sci Rep. 2025 Jul 24;15(1):26997. doi: 10.1038/s41598-025-12307-w.

Abstract

This paper proposes a novel metaheuristic algorithm-the Power Method Algorithm (PMA), which is inspired by the power iteration method to solve complex optimization problems. PMA simulates the process of computing dominant eigenvalues and eigenvectors, incorporating strategies such as stochastic angle generation and adjustment factors, effectively addressing eigenvalue problems in large sparse matrices. The algorithm is rigorously evaluated on 49 benchmark functions from the CEC 2017 and CEC 2022 test suites. Quantitative analysis reveals that PMA surpasses nine state-of-the-art metaheuristic algorithms and performs better, with average Friedman rankings of 3, 2.71, and 2.69 for 30, 50, and 100 dimensions, respectively. Statistical tests including the Wilcoxon rank-sum and Friedman test further confirm the robustness and reliability. Additionally, PMA demonstrates exceptional performance in solving eight real-world engineering optimization problems, consistently delivering optimal solutions. Experimental results show that PMA achieves an effective balance between exploration and exploitation, effectively avoiding local optima while maintaining high convergence efficiency. Therefore, PMA demonstrates notable competitiveness and practical value in interdisciplinary complex optimization tasks.

摘要

本文提出了一种新颖的元启发式算法——幂法算法(PMA),该算法受幂迭代法启发,用于解决复杂的优化问题。PMA模拟计算主导特征值和特征向量的过程,融入了随机角度生成和调整因子等策略,有效解决了大型稀疏矩阵中的特征值问题。该算法在CEC 2017和CEC 2022测试套件的49个基准函数上进行了严格评估。定量分析表明,PMA超过了九种先进的元启发式算法,表现更优,在30、50和100维时的平均弗里德曼排名分别为3、2.71和2.69。包括威尔科克森秩和检验和弗里德曼检验在内的统计测试进一步证实了其稳健性和可靠性。此外,PMA在解决八个实际工程优化问题时表现出色,始终能给出最优解。实验结果表明,PMA在探索和利用之间实现了有效平衡,有效避免了局部最优,同时保持了较高的收敛效率。因此,PMA在跨学科复杂优化任务中展现出显著的竞争力和实用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d26/12290077/08846826a1c6/41598_2025_12307_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验