Suppr超能文献

用于预测丙型肝炎病毒蛋白中新药靶点的结构生物信息学方法:全面分析

Structural bioinformatics approaches for predicting novel drug targets in hepatitis C virus proteins: a comprehensive analysis.

作者信息

Qu Miao, Gao Mingzhu, Sang Xisheng, Yu Miao, Guan Zihe, Chang Weizhi

机构信息

School of basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.

出版信息

Sci Rep. 2025 Jul 24;15(1):27011. doi: 10.1038/s41598-025-12563-w.

Abstract

This study employs structural bioinformatics approaches to identify and evaluate potential drug targets within the Hepatitis C virus (HCV) proteome. Through integration of homology modeling, molecular docking, and molecular dynamics simulations, we analyzed the structural features and druggability of key HCV proteins. The research focused on predicting binding sites, evaluating protein-ligand interactions, and assessing the therapeutic potential of identified targets. Our findings revealed promising drug targets including the NS3 protease, NS5B polymerase, core protein, and NS5A, with detailed characterization of their binding pockets and interaction patterns. The study provides structural insights for rational drug design against HCV and demonstrates the utility of computational approaches in antiviral drug discovery. While experimental validation is needed, these results contribute to the development of novel anti-HCV therapeutics and highlight potential strategies for targeted intervention.

摘要

本研究采用结构生物信息学方法,在丙型肝炎病毒(HCV)蛋白质组中识别和评估潜在的药物靶点。通过整合同源建模、分子对接和分子动力学模拟,我们分析了关键HCV蛋白的结构特征和药物可及性。该研究聚焦于预测结合位点、评估蛋白质-配体相互作用以及评估已识别靶点的治疗潜力。我们的研究结果揭示了有前景的药物靶点,包括NS3蛋白酶、NS5B聚合酶、核心蛋白和NS5A,并详细表征了它们的结合口袋和相互作用模式。该研究为针对HCV的合理药物设计提供了结构见解,并证明了计算方法在抗病毒药物发现中的实用性。虽然需要进行实验验证,但这些结果有助于新型抗HCV疗法的开发,并突出了靶向干预的潜在策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b651/12290103/a1a194b41a60/41598_2025_12563_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验