Suppr超能文献

“刚柔结合”策略实现了用于多功能显示单元和光感受器突触的稳健超长磷光。

"Rigid-Flexible" Strategy Realizes Robust Ultralong Phosphorescence for Multifunctional Display Unit and Photoreceptor Synapse.

作者信息

Guan Zhihao, Tang Zhaorun, Yao Zhengtong, Guo Quanxin, Zhang Shuai, Lv Zongze, Zhang Xinyue, Ma Ning, Liu Xinghai, Hu Zhiyu

机构信息

School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.

Institute of NanoMicroEnergy, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, P. R. China.

出版信息

Adv Mater. 2025 Jul 24:e07192. doi: 10.1002/adma.202507192.

Abstract

Amorphous materials are highly attractive for the development of ultralong room temperature phosphorescence (URTP) due to their ease of processing, scalability, and flexibility. However, the realization of stable URTP polymers remains a great challenge. Here, it is reported a robust and flexible approach to realize high-quality URTP polymers by doping the organic phosphor into the polymer matrix with both hydrophilic and hydrophobic components. This unique structure enables double confinement of the triplet exciton of phosphor, resulting in ultra-bright amorphous URTP films. URTP films exhibit narrow-band emission, ultra-long phosphorescence lifetime, ultra-high phosphorescence efficiency, and distinctive photoactivation properties, with intense phosphorescence emission observable even in daylight. Furthermore, it is demonstrated color-tunable emission through förster resonance energy transfer (FRET) and explores its potential applications in 3D printing, patterned displays, and bionic photoreceptor synapses. The work provides valuable insights into the design of robust, high-quality phosphorescent materials, which could pave the way for a wide range of applications in display and bionic technologies.

摘要

非晶态材料因其易于加工、可扩展性和柔韧性,在超长室温磷光(URTP)的开发中极具吸引力。然而,实现稳定的URTP聚合物仍然是一个巨大的挑战。在此,报道了一种稳健且灵活的方法,通过将有机磷光体掺杂到具有亲水和疏水成分的聚合物基质中,来实现高质量的URTP聚合物。这种独特的结构能够对磷光体的三重态激子进行双重限制,从而产生超亮的非晶态URTP薄膜。URTP薄膜表现出窄带发射、超长磷光寿命、超高磷光效率和独特的光激活特性,即使在日光下也能观察到强烈的磷光发射。此外,通过Förster共振能量转移(FRET)证明了其颜色可调发射,并探索了其在3D打印、图案显示和仿生光感受器突触中的潜在应用。这项工作为设计稳健、高质量的磷光材料提供了有价值的见解,这可能为显示和仿生技术中的广泛应用铺平道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验