Suppr超能文献

机器学习揭示了石珊瑚组织损失病不同组织状态下独特的基因表达特征。

Machine learning reveals distinct gene expression signatures across tissue states in stony coral tissue loss disease.

作者信息

Beavers Kelsey M, Gutierrez-Andrade Daniela, Van Buren Emily W, Emery Madison A, Brandt Marilyn E, Apprill Amy, Mydlarz Laura D

机构信息

The University of Texas at Austin Texas Advanced Computing Center, Austin, TX, USA.

Department of Biology, The University of Texas at Arlington, Arlington, TX, USA.

出版信息

R Soc Open Sci. 2025 Jul 23;12(7):241993. doi: 10.1098/rsos.241993. eCollection 2025 Jul.

Abstract

Stony coral tissue loss disease (SCTLD) has rapidly degraded Caribbean reefs, compounding climate-related stressors and threatening ecosystem stability. Effective intervention requires understanding the mechanisms driving disease progression and resistance. Here, we apply a supervised machine learning approach-support vector machine recursive feature elimination-combined with differential gene expression analysis to describe SCTLD in the reef-building coral and its dominant algal endosymbiont, . We analyse three tissue types: apparently healthy tissue on apparently healthy colonies, apparently healthy tissue on SCTLD-affected colonies and lesion tissue on SCTLD-affected colonies. This approach identifies genes with high classification accuracy and reveals processes associated with SCTLD resistance, such as immune regulation and lipid biosynthesis, as well as processes involved in disease progression, such as inflammation, cytoskeletal disruption and symbiosis breakdown. Our findings support evidence that SCTLD induces dysbiosis between the coral host and Symbiodiniaceae and describe the metabolic and immune shifts that occur as the holobiont transitions from healthy to diseased. This supervised machine learning methodology offers a novel approach to accurately assess the health states of endangered coral species, with potential applications in guiding targeted restoration efforts and informing early disease intervention strategies.

摘要

石珊瑚组织损失病(SCTLD)已迅速破坏了加勒比海珊瑚礁,加剧了与气候相关的压力因素,并威胁到生态系统的稳定性。有效的干预措施需要了解推动疾病进展和抗性的机制。在这里,我们应用一种监督式机器学习方法——支持向量机递归特征消除——并结合差异基因表达分析,来描述造礁珊瑚及其主要藻类内共生体中的SCTLD。我们分析了三种组织类型:健康珊瑚群体上看似健康的组织、受SCTLD影响的珊瑚群体上看似健康的组织以及受SCTLD影响的珊瑚群体上的病变组织。这种方法识别出具有高分类准确率的基因,并揭示了与SCTLD抗性相关的过程,如免疫调节和脂质生物合成,以及与疾病进展相关的过程,如炎症、细胞骨架破坏和共生关系破裂。我们的研究结果支持了SCTLD会导致珊瑚宿主与虫黄藻之间生态失调的证据,并描述了在共生体从健康状态转变为患病状态时发生的代谢和免疫变化。这种监督式机器学习方法提供了一种新颖的途径,可准确评估濒危珊瑚物种的健康状况,在指导有针对性的恢复工作和为早期疾病干预策略提供信息方面具有潜在应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5888/12289216/6b887d3b8c5f/rsos.241993.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验