Suppr超能文献

用于控制软体动物运动性滚动波的单个中枢模式发生器

A Single Central Pattern Generator for the Control of a Locomotor Rolling Wave in Mollusc .

作者信息

Wang Hui-Ying, Yu Ke, Yang Zhe, Zhang Guo, Guo Shi-Qi, Wang Tao, Liu Dan-Dan, Jia Ruo-Nan, Zheng Yu-Tong, Su Yan-Nan, Lou Yi, Weiss Klaudiusz R, Zhou Hai-Bo, Liu Feng, Cropper Elizabeth C, Yu Quan, Jing Jian

机构信息

State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.

National Laboratory of Solid State Microstructures, Department of Physics, Institute for Brain Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China.

出版信息

Research (Wash D C). 2023;6:0060. doi: 10.34133/research.0060. Epub 2023 Mar 6.

Abstract

Locomotion in mollusc is implemented by a pedal rolling wave, a type of axial locomotion. Well-studied examples of axial locomotion (pedal waves in larvae and body waves in leech, lamprey, and fish) are generated in a segmented nervous system via activation of multiple coupled central pattern generators (CPGs). Pedal waves in molluscs, however, are generated by a single pedal ganglion, and it is unknown whether there are single or multiple CPGs that generate rhythmic activity and phase shifts between different body parts. During locomotion in intact , bursting activity in the parapedal commissural nerve (PPCN) was found to occur during tail contraction. A cluster of 20 to 30 P1 root neurons (P1Ns) on the ventral surface of the pedal ganglion, active during the pedal wave, were identified. Computational cluster analysis revealed that there are 2 phases to the motor program: phase I (centered around 168°) and phase II (centered around 357°). PPCN activity occurs during phase II. The majority of P1Ns are motoneurons. Coactive P1Ns tend to be electrically coupled. Two classes of pedal interneurons (PIs) were characterized. Class 1 (PI1 and PI2) is active during phase I. Their axons make a loop within the pedal ganglion and contribute to locomotor pattern generation. They are electrically coupled to P1Ns that fire during phase I. Class 2 (PI3) is active during phase II and innervates the contralateral pedal ganglion. PI3 may contribute to bilateral coordination. Overall, our findings support the idea that pedal waves are generated by a single CPG.

摘要

软体动物的运动是由一种踏板滚动波来实现的,这是一种轴向运动。轴向运动的一些经过充分研究的例子(幼虫中的踏板波以及水蛭、七鳃鳗和鱼类中的体波)是通过激活多个耦合的中枢模式发生器(CPG)在分段神经系统中产生的。然而,软体动物中的踏板波是由单个踏板神经节产生的,并且尚不清楚是单个还是多个CPG产生节律性活动以及不同身体部位之间的相移。在完整动物的运动过程中,发现副踏板连合神经(PPCN)的爆发性活动发生在尾部收缩期间。在踏板神经节腹面发现了一组20到30个P1根神经元(P1Ns),它们在踏板波期间活跃。计算聚类分析表明,运动程序有两个阶段:第一阶段(以168°左右为中心)和第二阶段(以357°左右为中心)。PPCN活动发生在第二阶段。大多数P1Ns是运动神经元。共同活跃的P1Ns往往是电耦合的。鉴定出了两类踏板中间神经元(PIs)。第1类(PI1和PI2)在第一阶段活跃。它们的轴突在踏板神经节内形成一个环,并有助于运动模式的产生。它们与在第一阶段放电的P1Ns电耦合。第2类(PI3)在第二阶段活跃,并支配对侧踏板神经节。PI3可能有助于双侧协调。总体而言,我们的研究结果支持踏板波由单个CPG产生的观点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d1/10013812/536ed5f71caa/research.0060.fig.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验