文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种基于新型智能手机增强现实技术的解决方案,用于通过精细参考标记实现小颅内病变定位。

A novel smartphone augmented reality-based solution for small intracranial lesion localization with refined reference markers.

作者信息

Ye Yu-Qin, Wang Guan-Yi, Fan Ying-Nan, Feng Zhu-Sheng, Jia Yi-Bin, Bai Wei, Yang Yong-Xiang, He Xiao-Sheng

机构信息

Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, China.

Department of Neurosurgery, PLA 921st Hospital, Changsha, China.

出版信息

Front Neurol. 2025 Jul 10;16:1566557. doi: 10.3389/fneur.2025.1566557. eCollection 2025.


DOI:10.3389/fneur.2025.1566557
PMID:40708953
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12286799/
Abstract

OBJECTIVES: Neuronavigation is crucial for locating intracranial lesions in neurosurgery. However, it is unaffordable in numerous resource-limited areas. The emerging mobile augmented reality (AR) provides a low-cost alternative to locate lesions, but its accuracy still require improvement before widespread use. This study aimed to explore a novel smartphone AR solution for lesion localization based on a newly developed application and refined reference markers. METHODS: The smartphone AR solution and standard navigation were performed to locate intracranial lesions in 38 patients. The time required for AR and navigation, the deviation between lesion center points identified by AR and navigation, and the ratio of overlap region (ROR) between the lesion locations determined by both methods, were measured, respectively, to evaluate the AR performance in preoperative planning. RESULTS: The average time required for AR was shorter than that for navigation (256.61 ± 69.75 s vs. 454.16 ± 78.85 s, < 0.05), indicating the favorable efficiency of AR. The average deviation and ROR were 3.55 ± 1.71 mm and 75.03% ± 18.56%, which were within the acceptable range of intracranial lesion surgery. The overall accurate localization rate of AR was 81.57%. Moreover, compared to the first stage of this study, the time required for AR and deviation in the second stage were significantly reduced, and ROR was notably increased ( < 0.05). It revealed that with the accumulation of experience, AR efficiency and accuracy were improved. CONCLUSION: The smartphone AR-based solution provides a practical and reliable alternative to locate small intracranial lesions, especially in settings where neuronavigation is unavailable.

摘要

目的:神经导航对于神经外科手术中颅内病变的定位至关重要。然而,在众多资源有限的地区,它难以负担得起。新兴的移动增强现实(AR)为病变定位提供了一种低成本的替代方案,但在广泛应用之前,其准确性仍有待提高。本研究旨在探索一种基于新开发的应用程序和改进的参考标记的新型智能手机AR病变定位解决方案。 方法:对38例患者进行智能手机AR解决方案和标准导航以定位颅内病变。分别测量AR和导航所需的时间、AR和导航确定的病变中心点之间的偏差以及两种方法确定的病变位置之间的重叠区域比例(ROR),以评估AR在术前规划中的性能。 结果:AR所需的平均时间短于导航(256.61±69.75秒对454.16±78.85秒,<0.05),表明AR具有良好的效率。平均偏差和ROR分别为3.55±1.71毫米和75.03%±18.56%,在颅内病变手术的可接受范围内。AR的总体准确定位率为81.57%。此外,与本研究的第一阶段相比,第二阶段AR所需的时间和偏差显著减少,ROR显著增加(<0.05)。这表明随着经验的积累,AR的效率和准确性得到了提高。 结论:基于智能手机AR的解决方案为定位小的颅内病变提供了一种实用且可靠的替代方案,尤其是在无法进行神经导航的情况下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/361b/12286799/a637efb11674/fneur-16-1566557-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/361b/12286799/1ef050eb85d0/fneur-16-1566557-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/361b/12286799/8e3f169f9a46/fneur-16-1566557-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/361b/12286799/1c6e4d9170ca/fneur-16-1566557-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/361b/12286799/95dcf8687307/fneur-16-1566557-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/361b/12286799/a637efb11674/fneur-16-1566557-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/361b/12286799/1ef050eb85d0/fneur-16-1566557-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/361b/12286799/8e3f169f9a46/fneur-16-1566557-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/361b/12286799/1c6e4d9170ca/fneur-16-1566557-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/361b/12286799/95dcf8687307/fneur-16-1566557-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/361b/12286799/a637efb11674/fneur-16-1566557-g005.jpg

相似文献

[1]
A novel smartphone augmented reality-based solution for small intracranial lesion localization with refined reference markers.

Front Neurol. 2025-7-10

[2]
Intravenous magnesium sulphate and sotalol for prevention of atrial fibrillation after coronary artery bypass surgery: a systematic review and economic evaluation.

Health Technol Assess. 2008-6

[3]
Accuracy of Augmented Reality-Assisted Navigation in Dental Implant Surgery: Systematic Review and Meta-analysis.

J Med Internet Res. 2023-1-4

[4]
The effect of sample site and collection procedure on identification of SARS-CoV-2 infection.

Cochrane Database Syst Rev. 2024-12-16

[5]
Comparison of self-administered survey questionnaire responses collected using mobile apps versus other methods.

Cochrane Database Syst Rev. 2015-7-27

[6]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

[7]
Does Augmenting Irradiated Autografts With Free Vascularized Fibula Graft in Patients With Bone Loss From a Malignant Tumor Achieve Union, Function, and Complication Rate Comparably to Patients Without Bone Loss and Augmentation When Reconstructing Intercalary Resections in the Lower Extremity?

Clin Orthop Relat Res. 2025-6-26

[8]
The use of augmented reality in transsphenoidal surgery: A systematic review.

Br J Neurosurg. 2022-8

[9]
Current status of augmented reality in cerebrovascular surgery: a systematic review.

Neurosurg Rev. 2022-6

[10]
Adefovir dipivoxil and pegylated interferon alfa-2a for the treatment of chronic hepatitis B: a systematic review and economic evaluation.

Health Technol Assess. 2006-8

本文引用的文献

[1]
Evolution of the meta-neurosurgeon: A systematic review of the current technical capabilities, limitations, and applications of augmented reality in neurosurgery.

Surg Neurol Int. 2024-4-26

[2]
The bibliometric analysis of extended reality in surgical training: Global and Chinese perspective.

Heliyon. 2024-3-4

[3]
Application of Glasses-Free Augmented Reality Localization in Neurosurgery.

World Neurosurg. 2023-12

[4]
Visualization, navigation, augmentation. The ever-changing perspective of the neurosurgeon.

Brain Spine. 2022-8-17

[5]
Augmented Reality for Retrosigmoid Craniotomy Planning.

J Neurol Surg B Skull Base. 2021-9-10

[6]
Augmented Reality-Based Surgery on the Human Cadaver Using a New Generation of Optical Head-Mounted Displays: Development and Feasibility Study.

JMIR Serious Games. 2022-4-25

[7]
Augmented reality visualization in brain lesions: a prospective randomized controlled evaluation of its potential and current limitations in navigated microneurosurgery.

Acta Neurochir (Wien). 2022-1

[8]
Real-time augmented reality application in presurgical planning and lesion scalp localization by a smartphone.

Acta Neurochir (Wien). 2022-4

[9]
Holographic mixed-reality neuronavigation with a head-mounted device: technical feasibility and clinical application.

Neurosurg Focus. 2021-8

[10]
Early Experience With Virtual and Synchronized Augmented Reality Platform for Preoperative Planning and Intraoperative Navigation: A Case Series.

Oper Neurosurg (Hagerstown). 2021-9-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索