使用深度潜在变量路径建模整合多模态癌症数据。

Integrating multimodal cancer data using deep latent variable path modelling.

作者信息

Ing Alex, Andrades Alvaro, Cosenza Marco Raffaele, Korbel Jan O

机构信息

Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.

Bridging Research Division on Mechanisms of Genomic Variation and Data Science, German Cancer Research Center (DKFZ), Heidelberg, Germany.

出版信息

Nat Mach Intell. 2025;7(7):1053-1075. doi: 10.1038/s42256-025-01052-4. Epub 2025 Jul 22.

Abstract

Cancers are commonly characterized by a complex pathology encompassing genetic, microscopic and macroscopic features, which can be probed individually using imaging and omics technologies. Integrating these data to obtain a full understanding of pathology remains challenging. We introduce a method called deep latent variable path modelling, which combines the representational power of deep learning with the capacity of path modelling to identify relationships between interacting elements in a complex system. To evaluate the capabilities of deep latent variable path modelling, we initially trained a model to map dependencies between single-nucleotide variant, methylation profiles, microRNA sequencing, RNA sequencing and histological data using breast cancer data from The Cancer Genome Atlas. This method exhibited superior performance in mapping associations between data types compared with classical path modelling. We additionally performed successful applications of the model to stratify single-cell data, identify synthetic lethal interactions using CRISPR-Cas9 screens derived from cell lines and detect histologic-transcriptional associations using spatial transcriptomic data. Results from each of these data types can then be understood with reference to the same holistic model of illness.

摘要

癌症通常具有复杂的病理学特征,包括基因、微观和宏观特征,这些特征可以通过成像和组学技术分别进行探究。整合这些数据以全面了解病理学仍然具有挑战性。我们引入了一种称为深度潜在变量路径建模的方法,该方法将深度学习的表征能力与路径建模识别复杂系统中相互作用元素之间关系的能力相结合。为了评估深度潜在变量路径建模的能力,我们最初使用来自癌症基因组图谱的乳腺癌数据训练了一个模型,以绘制单核苷酸变异、甲基化谱、微小RNA测序、RNA测序和组织学数据之间的依赖关系。与经典路径建模相比,该方法在绘制数据类型之间的关联方面表现出卓越的性能。我们还成功地将该模型应用于对单细胞数据进行分层、使用源自细胞系的CRISPR-Cas9筛选识别合成致死相互作用以及使用空间转录组数据检测组织学-转录关联。然后,可以参照相同的整体疾病模型来理解来自每种数据类型的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19c/12283373/5e0f4e6092e2/42256_2025_1052_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索