Suppr超能文献

原发性免疫缺陷病诊断的新工具:从认知到人工智能

New tools for diagnosis of primary immunodeficiencies: from awareness to artificial intelligence.

作者信息

Soler-Palacín Pere, Rivière Jacques G, Burns Siobhán O, Rider Nicholas L

机构信息

Department of Pediatrics, Obstetrics and Gynecology, Preventive Medicine and Public Health, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain.

Infection and Immunity in Pediatric Patients Research Group, Vall d'Hebron Institute de Recerca (VHIR), Barcelona, Catalonia, Spain.

出版信息

Front Immunol. 2025 Jul 10;16:1593897. doi: 10.3389/fimmu.2025.1593897. eCollection 2025.

Abstract

Primary immune deficiencies (PI) are rare diseases associated with frequent, severe infections, inflammatory and autoimmune diseases and/or cancer. Because of the variability in presentation, undiagnosed PI patients can be encountered by many different medical specialists. A lack of awareness of and the rarity of PI can lead to delayed diagnosis particularly among primary care physicians and non-immunology specialists. These delays can lead to irreversible sequelae, decreased quality of life and premature mortality. In this review, we describe two projects designed to decrease the time to diagnosis in PI patients: 1) the expert-driven PIDCAP project conducted in Spain to promote early diagnosis in the primary care setting, and 2) a multi-modal data-driven approach using artificial intelligence and machine learning to identify individuals at high risk for PI. Both approaches aim to create widely available tools to promote early diagnosis and treatment of PI. Initial results have been positive. Future directions include larger studies and potentially combining expert-driven and data-driven approaches.

摘要

原发性免疫缺陷病(PI)是一类罕见疾病,与频繁、严重的感染、炎症性和自身免疫性疾病及/或癌症相关。由于临床表现的多样性,许多不同的医学专科医生都可能遇到未被诊断出的PI患者。对PI缺乏认识以及其罕见性可能导致诊断延迟,尤其是在初级保健医生和非免疫学专科医生中。这些延迟可能导致不可逆转的后遗症、生活质量下降和过早死亡。在本综述中,我们描述了两个旨在缩短PI患者诊断时间的项目:1)在西班牙开展的由专家驱动的PIDCAP项目,以促进初级保健环境中的早期诊断;2)一种使用人工智能和机器学习的多模式数据驱动方法,以识别PI高危个体。这两种方法都旨在创建广泛可用的工具,以促进PI的早期诊断和治疗。初步结果是积极的。未来的方向包括更大规模的研究以及可能将专家驱动和数据驱动方法相结合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e015/12286987/784b81e46fc4/fimmu-16-1593897-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验