Kidanemariam Alemayehu, Cho Sungbo
Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Republic of Korea.
Department of Semiconductor Engineering, Gachon University, Seongnam-si 13120, Republic of Korea.
Biosensors (Basel). 2025 Jul 7;15(7):437. doi: 10.3390/bios15070437.
Metal-organic framework (MOF)-based nanozymes represent a groundbreaking frontier in advanced microbial biosensing, offering unparalleled catalytic precision and structural tunability to mimic natural enzymes with superior stability and specificity. By engineering the structural features and forming composites, MOFs are precisely tailored to amplify nanozymatic activity, enabling the highly sensitive, rapid, and cost-effective detection of a broad spectrum of microbial pathogens critical to biomedical diagnostics and environmental monitoring. These advanced biosensors surpass traditional enzyme systems in robustness and reusability, integrating seamlessly with smart diagnostic platforms for real-time, on-site microbial identification. This review highlights cutting-edge developments in MOF nanozyme design, composite engineering, and signal transduction integration while addressing pivotal challenges such as biocompatibility, complex matrix interference, and scalable manufacturing. Looking ahead, the convergence of multifunctional MOF nanozymes with portable technologies and optimized in vivo performance will drive transformative breakthroughs in early disease detection, antimicrobial resistance surveillance, and environmental pathogen control, establishing a new paradigm in next-generation smart biosensing.
基于金属有机框架(MOF)的纳米酶代表了先进微生物生物传感领域的一个开创性前沿领域,它提供了无与伦比的催化精度和结构可调性,能够以卓越的稳定性和特异性模拟天然酶。通过设计结构特征和形成复合材料,MOF被精确定制以增强纳米酶活性,从而能够对生物医学诊断和环境监测至关重要的多种微生物病原体进行高度灵敏、快速且经济高效的检测。这些先进的生物传感器在稳健性和可重复使用性方面超越了传统酶系统,能够与智能诊断平台无缝集成,实现实时、现场的微生物鉴定。本综述重点介绍了MOF纳米酶设计、复合材料工程和信号转导集成方面的前沿进展,同时探讨了生物相容性、复杂基质干扰和可扩展制造等关键挑战。展望未来,多功能MOF纳米酶与便携式技术的融合以及体内性能的优化将推动早期疾病检测、抗菌药物耐药性监测和环境病原体控制方面的变革性突破,为下一代智能生物传感建立新的范式。