Suppr超能文献

使用SubtlePET™结合多种放射性示踪剂(18F-FDG、68Ga PSMA-11和18F-FDOPA)植入人工智能去噪算法:对技术人员辐射剂量的影响

Implantation of an Artificial Intelligence Denoising Algorithm Using SubtlePET™ with Various Radiotracers: 18F-FDG, 68Ga PSMA-11 and 18F-FDOPA, Impact on the Technologist Radiation Doses.

作者信息

Zhang-Yin Jules, Dragusin Octavian, Jonard Paul, Picard Christian, Grangeret Justine, Bonnier Christopher, Leveque Philippe P, Aerts Joel, Schaeffer Olivier

机构信息

Department of Nuclear Medicine, Centre National PET, Centre Hospitalier de Luxembourg, 4 Rue Ernest Barblé, L-1210 Luxembourg, Luxembourg.

Department of Medical Physics, Centre Hospitalier de Luxembourg, 4 Rue Ernest Barblé, L-1210 Luxembourg, Luxembourg.

出版信息

J Imaging. 2025 Jul 11;11(7):234. doi: 10.3390/jimaging11070234.

Abstract

This study assesses the clinical deployment of SubtlePET™, a commercial AI-based denoising algorithm, across three radiotracers-F-FDG, Ga-PSMA-11, and F-FDOPA-with the goal of improving image quality while reducing injected activity, technologist radiation exposure, and scan time. A retrospective analysis on a digital PET/CT system showed that SubtlePET™ enabled dose reductions exceeding 33% and time savings of over 25%. AI-enhanced images were rated interpretable in 100% of cases versus 65% for standard low-dose reconstructions. Notably, 85% of AI-enhanced scans received the maximum Likert quality score (5/5), indicating excellent diagnostic confidence and noise suppression, compared to only 50% with conventional reconstruction. The quantitative image quality improved significantly across all tracers, with SNR and CNR gains of 50-70%. Radiotracer dose reductions were particularly substantial in low-BMI patients (up to 41% for FDG), and the technologist exposure decreased for high-exposure roles. The daily patient throughput increased by an average of 4.84 cases. These findings support the robust integration of SubtlePET™ into routine clinical PET practice, offering improved efficiency, safety, and image quality without compromising lesion detectability.

摘要

本研究评估了基于人工智能的商用去噪算法SubtlePET™在三种放射性示踪剂——氟代脱氧葡萄糖(F-FDG)、镓-前列腺特异性膜抗原-11(Ga-PSMA-11)和氟代多巴(F-FDOPA)——上的临床应用,目的是在降低注射剂量、减少技术人员辐射暴露和扫描时间的同时提高图像质量。对数字PET/CT系统的回顾性分析表明,SubtlePET™能够实现超过33%的剂量降低和超过25%的时间节省。人工智能增强图像在100%的病例中被评为可解读,而标准低剂量重建的这一比例为65%。值得注意的是,85%的人工智能增强扫描获得了最高的李克特质量评分(5/5),表明具有出色的诊断置信度和噪声抑制,相比之下,传统重建只有50%达到这一水平。所有示踪剂的定量图像质量均有显著改善,信噪比(SNR)和对比噪声比(CNR)提高了50 - 70%。放射性示踪剂剂量降低在低体重指数患者中尤为显著(FDG高达41%),高暴露岗位的技术人员辐射暴露也有所减少。每日患者通量平均增加了4.84例。这些发现支持将SubtlePET™稳健地整合到常规临床PET实践中,在不影响病变可检测性的情况下提高效率、安全性和图像质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b89e/12295822/873c8a2476dd/jimaging-11-00234-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验