Suppr超能文献

脉冲电磁刺激通过上调胆固醇生物合成来促进神经元成熟。

Pulsed electromagnetic stimulation promotes neuronal maturation by up-regulating cholesterol biosynthesis.

作者信息

Chen Ping, Li Jingyi, Telezhkin Vsevolod, Gu Yu, Tao Min, Guo Liping, Song Simin, Dong Rihe, Luo Xianyang, Wang Yan, Liu Qian, Tian Weiming, Meng Weihua, Hong Wei, Song Bing

机构信息

Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen, China.

Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China.

出版信息

Stem Cell Res Ther. 2025 Jul 26;16(1):406. doi: 10.1186/s13287-025-04469-1.

Abstract

BACKGROUND

Stem cell therapies have emerged as transformative therapeutic strategies for neurological disorders. However, neurons derived from transplanted stem cells often exhibit low survival rates and remain in an immature state. While pulsed electromagnetic fields (PEMF) may enhance neuronal differentiation, the extent of this effect and its molecular mechanisms remain poorly characterized.

METHOD

Human induced pluripotent stem cells (iPSCs) induced cortical neurons received daily PEMF stimulation (1 mT, 15 Hz, 3.75 ms pulse duration) for 7 days during differentiation. Neuronal differentiation and synaptic maturation were assessed using immunocytochemistry, qPCR, western blotting, and live-cell imaging to evaluate neurite outgrowth. Functional maturation was analyzed through calcium imaging and patch-clamp electrophysiology. Transcriptomic profiling identified key pathways involved in PEMF-modulated neuronal maturation, with the role of FDFT1-mediated cholesterol biosynthesis mechanistically validated through pharmacological inhibition and genetic knockdown.

RESULT

PEMF accelerated early-stage neuronal differentiation without altering neurite outgrowth and enhanced synaptic maturation after sustained stimulation. PEMF-treated neurons displayed heightened spontaneous calcium signaling and improved functional maturation, including enhanced excitability, action potential kinetics, and voltage-gated ion channel activity. Transcriptomics revealed significant upregulation of cholesterol biosynthesis pathways, with FDFT1 (squalene synthase) as a central regulator. Pharmacological inhibition or genetic knockdown of FDFT1 abolished PEMF-induced neuronal differentiation and synaptic maturation.

CONCLUSION

PEMF accelerates early-stage differentiation of human cortical neurons and enhances synaptic maturation following sustained stimulation. These effects are mechanistically linked to the activation of FDFT1-mediated cholesterol biosynthesis. This non-invasive PEMF stimulation approach represents a promising strategy to optimize stem cell-based therapies for neurological disorders.

摘要

背景

干细胞疗法已成为治疗神经系统疾病的变革性治疗策略。然而,移植干细胞衍生的神经元通常存活率较低且仍处于未成熟状态。虽然脉冲电磁场(PEMF)可能会增强神经元分化,但其作用程度及其分子机制仍不清楚。

方法

人诱导多能干细胞(iPSC)诱导的皮质神经元在分化过程中每天接受PEMF刺激(1 mT,15 Hz,3.75 ms脉冲持续时间),持续7天。使用免疫细胞化学、qPCR、蛋白质印迹和活细胞成像评估神经元分化和突触成熟,以评估神经突生长。通过钙成像和膜片钳电生理学分析功能成熟。转录组分析确定了参与PEMF调节的神经元成熟的关键途径,通过药理学抑制和基因敲低机制验证了FDFT1介导的胆固醇生物合成的作用。

结果

PEMF加速了早期神经元分化,而不改变神经突生长,并在持续刺激后增强了突触成熟。PEMF处理的神经元表现出自发性钙信号增强和功能成熟改善,包括兴奋性增强、动作电位动力学和电压门控离子通道活性增强。转录组学显示胆固醇生物合成途径显著上调,FDFT1(角鲨烯合酶)是核心调节因子。FDFT1的药理学抑制或基因敲低消除了PEMF诱导的神经元分化和突触成熟。

结论

PEMF加速人皮质神经元的早期分化,并在持续刺激后增强突触成熟。这些作用在机制上与FDFT1介导的胆固醇生物合成的激活有关。这种非侵入性PEMF刺激方法代表了一种有前景的策略,可优化基于干细胞的神经系统疾病治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b28/12297729/f24c5572323d/13287_2025_4469_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验