Wang Yichong, Liu Junlang, Peters Michael M, Ishii Ryoma, Wang Dianzhuo, Chowdhury Sourav, Parker Kevin Kit, Shakhnovich Eugene I
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA.
Nat Commun. 2025 Jul 26;16(1):6907. doi: 10.1038/s41467-025-61959-9.
The upcycling of protein materials has long been hindered by the difficulty in restructuring them to usable forms. In contrast to proteins extracted using conventional organic denaturants, keratin treated with concentrated inorganic lithium bromide (LiBr) solution undergoes spontaneous aggregation into a stable gel with rapid phase-transition capability. We hypothesize that this distinct behaviour arises from an alternative denaturation mechanism that does not rely on direct interactions between proteins and concentrated ions. To investigate this, we study the denaturation effects of concentrated inorganic ion pairs using thermodynamic and spectroscopic analyses combined with atomistic molecular simulations. Through the isolation of indirect solute effects, our findings suggest a universal mechanism of salt-induced denaturation driven by entropy instead of enthalpy. We find that concentrated ion pairs like LiBr disrupt the water network structure rather than directly interacting with proteins. The mechanistic insight enables us to refine our previous extraction process of keratin materials, allowing for the spontaneous separation of denatured keratin into a condensed gel phase without additional chemicals and achieve closed-loop recycling of the LiBr denaturant. This simple, effective strategy can repurpose protein resources into versatile biomaterials in a simple, effective way without the need to separate organic denaturants from bulk proteins.
长期以来,蛋白质材料的升级循环利用一直受到难以将其重构为可用形式的困扰。与使用传统有机变性剂提取的蛋白质不同,用浓无机溴化锂(LiBr)溶液处理的角蛋白会自发聚集形成具有快速相变能力的稳定凝胶。我们推测,这种独特行为源于一种不依赖蛋白质与浓离子之间直接相互作用的变性机制。为了对此进行研究,我们结合原子分子模拟,利用热力学和光谱分析研究了浓无机离子对的变性作用。通过分离间接溶质效应,我们的研究结果表明,盐诱导变性的普遍机制是由熵而非焓驱动的。我们发现,像LiBr这样的浓离子对会破坏水网络结构,而不是直接与蛋白质相互作用。这一机理见解使我们能够改进之前的角蛋白材料提取工艺,无需额外化学物质就能使变性角蛋白自发分离成浓缩凝胶相,并实现LiBr变性剂的闭环循环利用。这种简单有效的策略能够以简单有效的方式将蛋白质资源重新利用为多功能生物材料,而无需从大量蛋白质中分离有机变性剂。