Suppr超能文献

基于深度卷积神经网络的阿基米德优化算法在基于安全物联网的医疗监测系统中的心脏病预测应用

Deep convolutional neural network based archimedes optimization algorithm for heart disease prediction based on secured IoT enabled health care monitoring system.

作者信息

S Sureshkumar, A V Santhosh Babu, S Joseph James, M Maranco

机构信息

P. A. College of Engineering and Technology, Pollachi, 642002, India.

Information Technology, Hindusthan Institute of Technology, Coimbatore, 641032, India.

出版信息

Sci Rep. 2025 Jul 25;15(1):27028. doi: 10.1038/s41598-025-12581-8.

Abstract

The Internet of Things (IoT) is a rapidly evolving and user-friendly technology that connects everything and enables effective communication between linked things. In hospitals and other healthcare centers, healthcare monitoring systems have exploded in popularity over the last decade, and wireless healthcare monitoring devices using diverse technologies have a huge interest in several countries worldwide. The existing studies in healthcare IoT met a few shortcomings in terms of privacy, security, higher data dimensionality, higher cost, larger execution time, and so on. To tackle these issues, we proposed a novel IoT-enabled and secured healthcare monitoring framework (IoT-SHMF) for heart disease prediction. The data are taken from the Cleveland Heart Disease database. First, authentication is performed through registration, login, and patient data verification. The Matrix-based RSA encryption technology and a blockchain-based data storage concept provide safe data transmission and authorization. Subsequently, the secured data is downloaded by the hospital management (HM) system. The HM system scrutinizes the decrypted data. Finally, the Deep Convolutional Neural Network-based Archimedes Optimization (DCNN-AO) algorithm classifies the normal and abnormal classes of heart disease. The implementation work of the proposed model is simulated using JAVA software with different performance measures. Various performance metrics with state-of-art methods validate the effectiveness of the proposed model. The proposed IoT-based system ensures better security by about 98%. The decryption time of our proposed approach, when the sensor nodes are equal to 25, is 37 seconds.

摘要

物联网(IoT)是一项快速发展且用户友好的技术,它连接万物并实现连接设备之间的有效通信。在医院和其他医疗保健中心,医疗监测系统在过去十年中广受欢迎,并且使用各种技术的无线医疗监测设备在全球多个国家引起了极大关注。现有的医疗物联网研究在隐私、安全、更高的数据维度、更高的成本、更长的执行时间等方面存在一些不足。为了解决这些问题,我们提出了一种用于心脏病预测的新型物联网支持的安全医疗监测框架(IoT-SHMF)。数据取自克利夫兰心脏病数据库。首先,通过注册、登录和患者数据验证进行认证。基于矩阵的RSA加密技术和基于区块链的数据存储概念提供安全的数据传输和授权。随后,医院管理(HM)系统下载安全数据。HM系统审查解密后的数据。最后,基于深度卷积神经网络的阿基米德优化(DCNN-AO)算法对心脏病的正常和异常类别进行分类。使用具有不同性能指标的JAVA软件对所提出模型的实现工作进行了模拟。与现有方法相比的各种性能指标验证了所提出模型的有效性。所提出的基于物联网的系统确保了约98%的更好安全性。当传感器节点数量等于25时,我们所提出方法的解密时间为37秒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0617/12297644/8442629d17ad/41598_2025_12581_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验