Suppr超能文献

基于机器学习的物联网智能医疗系统大数据分析综合调查

A Comprehensive Survey on Machine Learning-Based Big Data Analytics for IoT-Enabled Smart Healthcare System.

作者信息

Li Wei, Chai Yuanbo, Khan Fazlullah, Jan Syed Rooh Ullah, Verma Sahil, Menon Varun G, Li Xingwang

机构信息

Faculty of Engineering, Huanghe Science and Technology College, Zhengzhou, China.

Informetrics Research Group, Ton Duc Thang University, Ho Chi Minh City, 758307 Vietnam.

出版信息

Mob Netw Appl. 2021;26(1):234-252. doi: 10.1007/s11036-020-01700-6. Epub 2021 Jan 6.

Abstract

The outbreak of chronic diseases such as COVID-19 has made a renewed call for providing urgent healthcare facilities to the citizens across the globe. The recent pandemic exposes the shortcomings of traditional healthcare system, i.e., hospitals and clinics alone are not capable to cope with this situation. One of the major technology that aids contemporary healthcare solutions is the smart and connected wearables. The advancement in Internet of Things (IoT) has enabled these wearables to collect data on an unprecedented scale. These wearables gather context-oriented information related to our physical, behavioural and psychological health. The big data generated by wearables and other healthcare devices of IoT is a challenging task to manage that can negatively affect the inference process at the decision centres. Applying big data analytics for mining information, extracting knowledge and making predictions/inferences has recently attracted significant attention. Machine learning is another area of research that has successfully been applied to solve various networking problems such as routing, traffic engineering, resource allocation, and security. Recently, we have seen a surge in the application of ML-based techniques for the improvement of various IoT applications. Although, big data analytics and machine learning are extensively researched, there is a lack of study that exclusively focus on the evolution of ML-based techniques for big data analysis in the IoT healthcare sector. In this paper, we have presented a comprehensive review on the application of machine learning techniques for big data analysis in the healthcare sector. Furthermore, strength and weaknesses of existing techniques along with various research challenges are highlighted. Our study will provide an insight for healthcare practitioners and government agencies to keep themselves well-equipped with the latest trends in ML-based big data analytics for smart healthcare.

摘要

新冠肺炎等慢性病的爆发再次呼吁为全球公民提供紧急医疗设施。最近的这场大流行病暴露了传统医疗系统的缺陷,即仅靠医院和诊所无法应对这种情况。助力当代医疗解决方案的一项主要技术是智能互联可穿戴设备。物联网(IoT)的发展使这些可穿戴设备能够以前所未有的规模收集数据。这些可穿戴设备收集与我们的身体、行为和心理健康相关的情境信息。可穿戴设备及物联网的其他医疗设备所产生的大数据是一项具有挑战性的管理任务,可能会对决策中心的推理过程产生负面影响。应用大数据分析来挖掘信息、提取知识并进行预测/推理最近引起了广泛关注。机器学习是另一个研究领域,已成功应用于解决各种网络问题,如路由、流量工程、资源分配和安全等。最近,我们看到基于机器学习的技术在改善各种物联网应用方面的应用激增。尽管大数据分析和机器学习已得到广泛研究,但缺乏专门针对物联网医疗领域中基于机器学习的大数据分析技术发展的研究。在本文中,我们对机器学习技术在医疗领域大数据分析中的应用进行了全面综述。此外,还强调了现有技术的优缺点以及各种研究挑战。我们的研究将为医疗从业者和政府机构提供见解,使他们能够充分了解基于机器学习的大数据分析在智能医疗中的最新趋势。

相似文献

本文引用的文献

6
Visual Analytics for Explainable Deep Learning.用于可解释深度学习的可视化分析
IEEE Comput Graph Appl. 2018 Jul/Aug;38(4):84-92. doi: 10.1109/MCG.2018.042731661.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验